Robin Kaiser
Resonant dipole-dipole interactions: Dicke subradiance and Anderson localisation


Date & heure
06/22/22 – 13h
Lieu
CDF
Accueil
The quest for Anderson localization of light in three dimensions has been at the center of many experimental and theoretical activities. Cold atoms have emerged as interesting quantum system to study coherent transport properties of light. Initial experiments have established that dilute samples with large optical thickness allow studying weak localization of light, which has been well described by a mesoscopic model. Recent experiments on light scattering with cold atoms have shown that Dicke super- or subradiance occurs in the same samples, a feature not captured by the traditional mesoscopic models. The use of a long range microscopic coupled dipole model allows to capture both the mesoscopic features of light scattering and Dicke super- and subradiance in the single photon limit. I will review experimental and theoretical state of the art on the possibility of Anderson localization of light by cold atoms.
40 years of Quantum Optics
This symposium celebrates the 40th anniversary of the launch of quantum optics activities at the Kastler Brossel Laboratory
Conference in Vietnam / 6-9 october 2025
100 years of quantum physics in honor of Professor Serge Haroche