Martin ZWIERLEIN
Owls to Athens: Recent experiments on Rotating Bose Gases


Date & heure
2023/07/12 – 11h
Lieu
Lhomond
Accueil
Rapidly rotating quantum gases, pioneered at LKB, realize the physics of charged particles in high magnetic fields. We developed a novel protocol, geometric squeezing, that enables to create Bose-Einstein condensates in a single Landau gauge wavefunction of the lowest Landau level. Based on the non-commutativity of guiding center X and Y coordinates, geometric squeezing in a saddle potential is a real space analogue to squeezing in phase space of an inverted 1D harmonic oscillator. The condensate’s transverse width shrinks to the Heisenberg-limited ground-state extent of cyclotron motion. Removing the saddle enables studying the evolution of a Landau gauge condensate in « flat land » under the sole influence of interactions. Surprisingly, we find that Landau gauge condensates are unstable towards crystallization into arrays of droplets. This instability of states in the lowest Landau level has its classical analogy in the Kelvin-Helmholtz instability of counterflowing liquids. We explore the crossover of this instability from the lowest Landau level to the Thomas-Fermi regime. I will discuss experiments on observing edge states in confined geometries and prospects to extend this work beyond mean-field quantum Hall states of bosons.
Michael Tarbutt
Centre for Cold Matter, Imperial College London
Searching for new physics with ultracold molecules
Ignacio Cirac
Max Planck Institute of Quantum Optics
Quantum Computing and Simulation in the presence of errors