Jobs
Retrouvez sur cette page nos offres destinées aux stagiaires, doctorants, post-doctorants…
Si aucune proposition ne correspond à votre profil, vous pouvez contacter directement les équipes.
Ingénieur-e électronicien-ne H/F
Réservé aux agents CNRS (fonctionnaires et CDI) et aux fonctionnaires et CDI de droit public
Pour postuler cliquez ici : https://emploi.cnrs.fr/Offres/MOBINT/UMR8552-MOBINT-N51019/Default.aspx
Date limite de candidature : jeudi 16 janvier 2025 00:00:00 heure de Paris
Les activités de l’ingénieur électronicien concerneront notamment la réalisation de dispositifs spécifiques tels que des systèmes en électronique analogique bas bruit, des dispositifs d’asservissement pour l’optique moderne, des systèmes d’acquisition et de traitement de signaux basse fréquence et RF. Les interventions porteront également sur l’électronique numérique pour le pilotage et l’automatisation de systèmes. L’ingénieur pourra être amené à collaborer en mode projet avec les autres services instrumentaux de la plateforme ou du laboratoire (mécanique, optique, cryogénie).
Activités principales :
Etablir avec les chercheurs les spécifications techniques des besoins en vue de la rédaction du cahier des charges fonctionnelles.
Assurer la conception, la réalisation et le pilotage d’ensembles et de cartes électroniques.
Réaliser l’intégration de sous-ensembles électroniques dans un système complexe.
Définir et concevoir l’implantation de composants (passifs, discrets), des circuits intégrés analogiques, logiques et programmables (ASIC, FPGA, microprocesseur, DSP…).
Rédiger les documents techniques (rapports de tests, d’intégration, notes techniques et d’utilisation, études de coûts et délais…).
Maintenir les outils de conception et de développement électronique et informatique.
Assurer l’interface entre le bureau d’études et l’atelier d’électronique.
Internship/PhD: Quantum Approach to Optical Super-Resolution
This research will focus on advancing super-resolution imaging in realistic conditions, providing solutions to the challenges of multi-parameter estimation and developing methods to handle experimental imperfections and source motion. By working on both experiment and theory, leveraging estimation theory -classical and quantum-, machine learning and Bayesian techniques, the goal is to achieve unprecedented imaging precision and pave the way to a new paradigm in imaging.
It was long believed that the ultimate resolution limit in imaging was dictated by the Rayleigh criterion, which states that two point sources are indistinguishable when their images overlap excessively. This diffraction limit, often considered a fundamental barrier in conventional imaging systems, posed a significant challenge for resolving closely spaced objects. However, recent advances in quantum metrology have revealed that the Rayleigh limit is not a fundamental boundary [1]. Employing non-conventional imaging techniques, inspired by quantum metrology, it is possible to achieve super-resolution imaging, surpassing the classical resolution limits [2,3]. One such approach is pursued in the PESto experiment at LKB, where Spatial Mode Demultiplexing (SPADE) is used. The light from two point sources is demultiplexed into a basis of Hermite-Gaussian spatial modes. Detecting and counting photons in each spatial mode of the multimode light, the distance between the two point sources is estimated with a precision approaching the quantum limit [4], order of magnitudes better than the Raileigh limit.
In practical imaging scenarios, multiple parameters must often be estimated simultaneously, making the problem more complex [5]. Notably, the SPADE technique is only quantum-optimal when only one parameter is to be estimated, and the others, such as the centroid of the source distribution, the relative intensity between the sources 0r even the number of sources, are known. This PhD project aims to extend the capabilities of SPADE to more realistic scenarios, incorporating multi-parameter estimation, low-flux detection down to the single photon level, and the effects of environmental factors such as optical turbulence. Addressing these complexities requires the integration of machine-learning techniques to optimize the choice of spatial modes, extract multiple parameters from the data efficiently, and ensure robustness against experimental imperfections. Additionally, in scenarios involving dynamic or moving sources—where only limited information can be gathered in real-time—a Bayesian approach to estimation will be explored to track the sources effectively.
This research will focus on advancing super-resolution imaging in realistic conditions, providing solutions to the challenges of multi-parameter estimation and developing methods to handle experimental imperfections and source motion. By working on both experiment and theory, leveraging estimation theory -classical and quantum-, machine learning and Bayesian techniques, the goal is to achieve unprecedented imaging precision and pave the way to a new paradigm in imaging.
Contact: Nicolas Treps, nicolas.treps@lkb.upmc.fr
[1] Tsang, M., Nair, R., & Lu, X. M. (2016). Quantum theory of superresolution for two incoherent optical point sources. Physical Review X, 6(3), 031033.
[2] Gessner, M., Treps, N., & Fabre, C. (2023). Estimation of a parameter encoded in the modal structure of a light beam: a quantum theory. Optica, 10(8), 996-999.
[3] Sorelli, M. Gessner, M. Walschaers, and N. Treps, Quantum limits for resolving Gaussian sources, Phys. Rev. Research 4, L032022 (2022).
[4] Rouvière, C., Barral, D., Grateau, A., Karuseichyk, I., Sorelli, G., Walschaers, M., & Treps, N. (2024). Ultra-sensitive separation estimation of optical sources. Optica, 11(2), 166-170.
[5] Řehaček, J., Hradil, Z., Stoklasa, B., Paúr, M., Grover, J., Krzic, A., & Sánchez-Soto, L. L. (2017). Multiparameter quantum metrology of incoherent point sources: towards realistic superresolution. Physical Review A, 96(6), 062107.
[6] C. Fabre and N. Treps, Modes and States in Quantum Optics, Rev. Mod. Phys. 92, 035005 (2020).
M1 theory internship: Energy-space sub- diffusion in driven disordered Bose gases
During this M2 internship, we propose to study theoretically and numerically the dynamics of Bose gases subjected to both an oscillating driving force and a spatially disordered potential. This scenario, recently realized experimentally, gives rise to an original mechanism of sub-diffusion in energy space, whose quantitative description for realistic models of disorder remains to establish. This is the task that will be accomplished during this internship. More generally, this internship will be an opportunity to become familiar with the modern research fields of non-equilibrium quantum physics and ultracold Bose gases. See here for details.
2-year postdoctoral position on dynamical phase transitions in Bose gases
A theoretical postdoctoral position opens at LKB in Paris, to address the non-equilibrium dynamics of 2D Bose gases quenched across the Kosterlitz-Thouless transition. The project will involve a variety of methods such as field theories, kinetic approaches and numerical simulations. A collaboration with the local experimental group investigating non-equilibrium fluids of light will be possible. The postdoc is expected to start on January 2025, but the position will remain open untill filed.
Interested candidates should contact Nicolas Cherroret at nicolas.cherroret@lkb.upmc.fr. See here for a more detailed description of the position.