Wonho Jhe
Nonlinear, Nonequilibrium, Collective Dynamics in a Periodically Modulated Cold Atom System


Date & heure
15/02/2017
Lieu
CdF, salle 2
Accueil
Periodically modulated systems form one of the most important classes of nonequilibrium systems, both conceptually and in terms of applications. They have discrete time-translation symmetry: they are invariant with respect to time translation by modulation period tF. Nevertheless, they have stable vibrational states with periods of 2tF, that is period doubling. Interestingly, in a many-body system, dynamical period doubling in itself does not break the time translation symmetry, a consequence of fluctuations. However, if as a result of the interaction the state populations become different, the symmetry is broken, an Ising-class phase transition. We show that an atomic system in a periodically modulated optical trap displays an ideal mean-field symmetry-breaking transition, which is a critical phenomenon as demonstrated by experimental measurement of critical exponents. We also discuss the dynamic phase transition as well as kinetic phase transition observed in the modulated atom trap.
Michael Tarbutt
Centre for Cold Matter, Imperial College London
Searching for new physics with ultracold molecules
Ignacio Cirac
Max Planck Institute of Quantum Optics
Quantum Computing and Simulation in the presence of errors