1. Rydberg atoms
  2. About the team
  3. People
  4. Clément SAYRIN

Clément SAYRIN

Assistant Professor

Clément SAYRIN

Site
Collège de France
11 place Marcelin Berthelot, 75005 Paris, France
CdF – Building E Physique – Ground floor – Room E0.8

Team
Rydberg atoms

Contact
Phone : (+33) 1 44 27 11 99
Mail : clement.sayrin@lkb.ens.fr

Clément SAYRIN

Teaching

List of shared documents available on my personal teaching page

Education & Scientific career

  • since 2015: Associate Professor (Maître de conférences) at Sorbonne Université, Paris
  • 2012 — 2015: Postdoctoral fellow, Atominstitut, TU Wien, Group of Prof. Arno Rauschenbeutel, Vienna
  • 2007 — 2012: Professeur Agrégé Préparateur at École Normale Supérieure (ENS), Paris
  • 2007 — 2011: PhD Student, Laboratoire Kastler Brossel, CQED group, under the supervision of Prof. Michel Brune
  • 2006: Agrégation de Physique, option Physique
  • 2003 — 2007: Student of the ENS, Paris

Awards, distinctions

Publications

ORCID iD, Google Scholar

1.
Méhaignerie, P. et al. Interacting Circular Rydberg Atoms Trapped in Optical Tweezers. PRX Quantum 6, 010353 (2025).
1.
Ravon, B. et al. Array of Individual Circular Rydberg Atoms Trapped in Optical Tweezers. Phys. Rev. Lett. 131, 093401 (2023).
1.
Méhaignerie, P., Sayrin, C., Raimond, J.-M., Brune, M. & Roux, G. Spin-motion coupling in a circular-Rydberg-state quantum simulator: Case of two atoms. Phys. Rev. A 107, 063106 (2023).
1.
Cantat-Moltrecht, T. et al. Long-lived circular Rydberg states of laser-cooled rubidium atoms in a cryostat. Phys. Rev. Research 2, 022032 (2020).
1.
Cortiñas, R. G. et al. Laser Trapping of Circular Rydberg Atoms. Phys. Rev. Lett. 124, 123201 (2020).
1.
Schneeweiss, P., Dareau, A. & Sayrin, C. Cold-atom-based implementation of the quantum Rabi model. Phys. Rev. A 98, 021801 (2018).
1.
Nguyen, T. L. et al. Towards Quantum Simulation with Circular Rydberg Atoms. Phys. Rev. X 8, 011032 (2018).
1.
Sayrin, C. et al. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms. Phys. Rev. X 5, 041036 (2015).
1.
Sayrin, C., Clausen, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica 2, 353–356 (2015).
1.
Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat Commun 5, 5713 (2014).
1.
Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms. Phys. Rev. A 89, 063829 (2014).
1.
Reitz, D. et al. Backscattering properties of a waveguide-coupled array of atoms in the strongly nonparaxial regime. Phys. Rev. A 89, 031804 (2014).
1.
Reitz, D., Sayrin, C., Mitsch, R., Schneeweiss, P. & Rauschenbeutel, A. Coherence Properties of Nanofiber-Trapped Cesium Atoms. Phys. Rev. Lett. 110, 243603 (2013).
1.
Peaudecerf, B. et al. Quantum feedback experiments stabilizing Fock states of light in a cavity. Phys. Rev. A 87, 042320 (2013).
1.
Amini, H. et al. Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays. Automatica 49, 2683–2692 (2013).
1.
Raimond, J. M. et al. Quantum Zeno dynamics of a field in a cavity. Phys. Rev. A 86, 032120 (2012).
1.
Zhou, X. et al. Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections. Phys. Rev. Lett. 108, 243602 (2012).
1.
Sayrin, C. et al. Optimal Time-Resolved Photon Number Distribution Reconstruction of a Cavity Field by Maximum Likelihood. New Journal of P (2012).
1.
Somaraju, A., Dotsenko, I., Sayrin, C. & Rouchon, P. Design and Stability of Discrete-Time Quantum Filters with Measurement Imperfections. in 2012 AMERICAN CONTROL CONFERENCE (ACC) 5084–5089 (IEEE COMPUTER SOC, 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA, 2012).
1.
Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011).
1.
Raimond, J. M. et al. Phase Space Tweezers for Tailoring Cavity Fields by Quantum Zeno Dynamics. Phys. Rev. Lett. 105, 213601 (2010).
1.
Brune, M. et al. Process Tomography of Field Damping and Measurement of Fock State Lifetimes by Quantum Nondemolition Photon Counting in a Cavity. Phys. Rev. Lett. 101, 240402 (2008).
1.
Bernu, J. et al. Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect. Phys. Rev. Lett. 101, 180402 (2008).
1.
Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008).
1.
Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–894 (2007).
1.
Machu, Y., Sayrin, C. & Brune, M. Procédé de génération holographique d’un réseau de points de focalisation.
Back to directory