

TD 11 - OSCILLATEURS HARMONIQUES QUANTIQUES COUPLÉS

1 Prolégomènes : produit tensoriel

Soient deux espaces de Hilbert \mathcal{F} et \mathcal{G} de dimension respectives 3 et 2, ayant pour bases respectives $B_{\mathcal{F}}$ et $B_{\mathcal{G}}$. Soient \widehat{U} et \widehat{V} deux observables formant un ECOC de \mathcal{F} et \widehat{W} une observables formant un ECOC de \mathcal{G} . On donne les matrices représentant les différentes observables :

$$\left(\widehat{U} \right)_{B_{\mathcal{F}}} = u \begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix} \qquad \left(\widehat{V} \right)_{B_{\mathcal{F}}} = v \begin{pmatrix} 2 & & \\ & 1 & \\ & & 1 \end{pmatrix} \qquad \left(\widehat{W} \right)_{B_{\mathcal{G}}} = w \begin{pmatrix} 1 & \\ & 2 \end{pmatrix}$$

- 1. Former une base de l'espace produit tensoriel $\mathcal{F} \otimes \mathcal{G}$? Quelle est la dimension de $\mathcal{F} \otimes \mathcal{G}$? Soient $|x\rangle = \frac{1}{\sqrt{2}} (|u, 2v\rangle + |2u, v\rangle)$ un ket de \mathcal{F} et $|y\rangle = \frac{1}{\sqrt{2}} (|w\rangle i|2w\rangle)$ un ket de \mathcal{G} .
- 2. Quelle est l'expression du produit tensoriel entre état $|x\rangle \otimes |y\rangle$ développé sur la base $B_{\mathcal{F}\otimes\mathcal{G}}$?
- 3. Déterminer la norme du ket $|x\rangle \otimes |y\rangle$.
- 4. Déterminer l'action du produit tensoriel d'opérateurs $\widehat{U} \otimes \widehat{W}$ sur le ket $|x\rangle \otimes |y\rangle$.

2 Oscillateurs harmoniques quantiques couplés

Soient deux particules de masses identiques m soumises au même potentiel harmonique à une dimension. On note O_x , l'axe de déplacement des particules, x_1 et x_2 leurs positions et p_1 et p_2 leurs impulsions. On note ω la pulsation caractéristique du puits de potentiel harmonique.

Dans un premier temps on considère qu'il n'y a pas de couplage entre les deux oscillateurs harmoniques (OH), c'est-à-dire qu'il n'y a pas d'interaction entre les deux particules : les deux OH sont indépendants. On note ε_1 et ε_2 les espaces de Hilbert associés à chacun des deux OH. Les kets du système composé des deux OH appartiennent à l'espace produit tensoriel $\varepsilon = \varepsilon_1 \otimes \varepsilon_2$. On note \widehat{H}_1 et \widehat{H}_2 les hamiltoniens des OH dans leurs espaces de Hilbert respectifs. L'hamiltonien total du système non couplé est donc $\widehat{H}_0 = \widehat{H}_1 \otimes \widehat{\mathbb{1}}_2 + \widehat{\mathbb{1}}_1 \otimes \widehat{H}_2$. On note $\widehat{\mathbb{1}} \equiv \widehat{\mathbb{1}}_1 \otimes \widehat{\mathbb{1}}_2$ l'opérateur identité dans ε .

Enfin, on note \hat{a}_1 (agissant dans ε_1) et \hat{a}_2 (agissant dans ε_2) les opérateurs d'annihilation associés à ces deux oscillateurs harmoniques et $|n_1\rangle$ et $|n_2\rangle$ les états nombres des OH. On notera $|n_1, n_2\rangle \equiv |n_1\rangle|n_2\rangle \equiv |n_1\rangle \otimes |n_2\rangle$ l'état produit tensoriel des états nombres $|n_1\rangle$ et $|n_2\rangle$.

OH non couplés

5. Exprimer \hat{H}_1 et \hat{H}_2 en fonction des coordonnées dimensionnées $(\hat{x}_1, \hat{x}_2, \hat{p}_1, \hat{p}_2)$.

- 6. Écrire \hat{H}_1 et \hat{H}_2 en utilisant des coordonnées adimensionnées. On notera avec des majuscules les variables adimensionnées. On précisera l'expression de la longueur et de l'impulsion caractéristiques du problème.
- 7. Donner sans calcul l'expression de \widehat{H}_0 en fonction des opérateurs nombre \widehat{N}_1 et \widehat{N}_2 . Quel est le spectre (ensemble des valeurs propres) de ces deux opérateurs (démonstration non demandée)?

Dans la suite on pose $\widehat{N} = \widehat{N}_1 \otimes \widehat{1}_2 + \widehat{1}_1 \otimes \widehat{N}_2$.

- 8. Donner sans calcul les énergies propres E_{n_1,n_2} du problème. Quel est le degré de dégénérescence des niveaux d'énergie du système de 2 OH?
- 9. Quels sont les états stationnaires du système composés des deux OH?

OH couplés

On ajoute maintenant le terme de couplage

$$\widehat{V} = \hbar g \left[\left(\hat{a}_1^{\dagger} \otimes \hat{\mathbb{1}}_2 \right) \left(\hat{\mathbb{1}}_1 \otimes \hat{a}_2 \right) + \left(\hat{\mathbb{1}}_1 \otimes \hat{a}_2^{\dagger} \right) \left(\hat{a}_1 \otimes \hat{\mathbb{1}}_2 \right) \right] \equiv \hbar g \left(\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_1 \hat{a}_2^{\dagger} \right)$$

à l'hamiltonien. Cet hamiltonien inclut deux processus : création d'une excitation dans l'OH1 et annihilation d'une excitation dans l'OH2, et inversement. On utilise ici et dans toute la suite les raccourcis de notation : $\hat{a}_1 \equiv \hat{a}_1 \otimes \hat{1}_2$, $\hat{a}_2 \equiv \hat{1}_1 \otimes \hat{a}_2$, $\hat{N}_1 \equiv \hat{N}_1 \otimes \hat{1}_2$, etc. Il suffit donc de se souvenir que les opérateurs avec un indice 1 agissent dans ε_1 et ceux avec un indice 2 dans ε_2 .

L'hamiltonien du système couplé est donc $\left| \widehat{H} = \widehat{H}_0 + \widehat{V} \right|$

On introduit les opérateurs $\hat{a}_p = \frac{1}{\sqrt{2}} (\hat{a}_1 + \hat{a}_2)$ et $\hat{a}_m = \frac{1}{\sqrt{2}} (\hat{a}_1 - \hat{a}_2)$.

- 10. Exprimer \widehat{H} en fonction de ces opérateurs.
- 11. Que vaut le commutateur $[\hat{a}_p, \hat{a}_p^{\dagger}]$?

De même, on peut montrer que $[\hat{a}_m, \hat{a}_m^{\dagger}]$ a la même valeur, et que tous les autres commutateurs possibles entre $\hat{a}_m, \hat{a}_m^{\dagger}, \hat{a}_p$ et \hat{a}_p^{\dagger} sont nuls.

12. En vous appuyant sur le cours (aucune démonstration demandée), expliquer ce qui permet d'affirmer que le spectre des opérateurs $\hat{N}_p = \hat{a}_p^{\dagger} \hat{a}_p$ et $\hat{N}_m = \hat{a}_m^{\dagger} \hat{a}_m$ dans le cas du système couplé est le même que celui de \hat{N}_1 et \hat{N}_2 dans le cas des OH non couplés.

Dans la suite on note n_p et n_m les valeurs propres des opérateurs \widehat{N}_p et \widehat{N}_m , respectivement. De plus, on se place dans le cas où $0 < g < \omega$ et où $\nexists (q,r) \in \mathbb{N}^2$ tels que $q\omega = rg$.

- $13. \ \ Quelles sont alors les {\'e}nergies propres du syst\`eme coupl\'e, ainsi que leur degr\'e de d\'eg\'en\'erescence?$
- On remarque que l'état fondamental $|n_p=0, n_m=0\rangle$ est en fait également l'état fondamental du système non couplé $|n_1=0, n_2=0\rangle$.
- 14. Exprimer le premier état excité du système couplé sur la base des états propres du système non couplé $\{|n_1, n_2\rangle\}$.
- 15. Exprimer le second état excité du système couplé sur la base des états propres du système non couplé $\{|n_1, n_2\rangle\}$.

2023-2024 Page 2 sur 2