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Abstract

This internship report outlines work performed within the Trapped Ions team at Laboratoire

Kastler Brossel (LKB), a leading research institution focusing on high-precision measurements

to test fundamental physical theories. The team's primary experimental goal is to precisely

determine the proton-to-electron mass ratio (µ) through the measurement of a speci�c two-

photon transition in the H+
2 ion, aiming for an unprecedented experimental uncertainty of

1 × 10−12. The present work of this internship was focused on exploring the fundamental

properties of H+
2 through numerical simulations for future measurements in this molecule.

This internship was conducted under the supervision of Laurent Hilico, with the valuable

assistance of doctoral researcher Maxime Leuliet and the support of researcher Jean-Philippe

Karr.



Chapter 1

Introduction

I Context and Motivation

I.1 The Trapped Ions Team at Laboratoire Kastler Brossel

The Laboratoire Kastler Brossel (LKB) is a joint research unit a�liated with the École Normale

Supérieure, Sorbonne University, the Collège de France, and the National Centre for Scienti�c

Research (CNRS). Within LKB, the Trapped Ions team leverages the unique properties of cold,

trapped ions to conduct high-precision measurements. Their research aims to rigorously test

physical theories and enhance our understanding of fundamental physical constants. This team

uniquely combines both theoretical and experimental approaches to study the H+
2 ion.

I.2 Precision Tests of Fundamental Physics

Numerous high-precision experiments are currently underway to test the Standard Model of

physics. These e�orts have two primary objectives: �rst, to re�ne the values of fundamen-

tal constants, as maintained by CODATA [8]; and second, to search for physics beyond the

Standard Model.

Among the simplest and most precisely calculable molecular systems are the hydrogen

molecular ions H+
2 and HD+. Each of these ions consists of only two nuclei and a single electron.

The transition frequencies within these systems are directly sensitive to the proton-to-electron

mass ratio, µ = mp/me, since Hydrogen molecular iopns are calculable quantum systems. This

sensitivity allows for extremely precise determinations of this crucial fundamental constant.

Recent measurements on HD+ have already improved the accuracy of µ to 2× 10−11 [9], with

further improvements expected using H+
2 [10, 11, 12].
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Figure 1.1: Historical improvement in the measurement accuracy of the proton-to-electron
mass ratio (mp/me) over time, as re�ected in CODATA [1] adjustments and various
experimental results. The left panel shows the overall trend from 1970 to 2025, with a

signi�cant decrease in inaccuracy. The zoomed-in right panel highlights recent advancements
(2012-2025), di�erentiating between results from Penning trap measurements and HD+

spectroscopy.

II Overview of the Experiment

REFIMEVE

1542 nm

Frequency Comb

1051 nm

1560 nm

1900 nm

1051 nm

1549 nm

SFG

626 nm

SHG

313 nm
Be+ Cooling

CO2 Laser

QCL

9.2 µm

H2
+ Spectroscopy

Laser Diode

1620 nm

H2
+ Quadrupole Transition

|v = 0, L = 2⟩ → |v = 2, L = 2⟩

Figure 1.2: Scheme of the SI-referenced lasers in the H+
2 experiment at LKB and its purpose.

2



The experiment conducted at LKB aims to measure with high precision the two-photon tran-

sition frequency between the ro-vibrational levels 1sσg |ν = 0, L = 2⟩ → |ν = 1, L = 2⟩ of

the H+
2 molecular ion. To suppress �rst-order Doppler shifts, a major limitation in precision

spectroscopy, the transition is driven using two counter-propagating photons, which e�ectively

cancel the Doppler e�ect in the laboratory frame.

The H+
2 ions are prepared in a well-de�ned quantum state using Resonance Enhanced Multi-

Photon Ionization (REMPI), a 3+1 photon ionization process at 303 nm. This method selec-

tively ionizes neutral H2 molecules into the desired |ν = 0, L = 2⟩ ro-vibrational level of the ion.
The resulting H+

2 ions are then trapped in a linear radiofrequency trap that ensures con�nement

and isolation from environmental perturbations.

Due to the homonuclear and symmetric nature of H+
2 , one-photon electric dipole transitions

are strongly suppressed, making two-photon transitions the dominant excitation mechanism.

Despite their low transition probabilities, the high spectral resolution enabled by Doppler-free

two-photon spectroscopy makes this approach ideal for probing such forbidden transitions with

exceptional accuracy.

At the target precision level of 10−12, the second-order Doppler shift becomes a signi�cant

consideration. This relativistic e�ect is given by:

∆ν

ν
=

v2

2c2
=

1
2
mv2

mc2
.

For H+
2 ions with a typical kinetic energy of approximately 1 eV and a rest mass energy of about

2 GeV, this corresponds to a relative shift of roughly 5×10−10. To mitigate this uncertainty, the

ions must be cooled to very low temperatures. Unfortunately, laser cooling is not feasible for

H+
2 due to its forbidden dipole transitions. Instead, sympathetic cooling is employed: another

ionic species, speci�cally Be+, is laser-cooled in the same trap, and H+
2 is subsequently cooled

via Coulomb interaction with the cold Be+ ions. Beryllium ions are ideal for this purpose due

to their light mass and a convenient cooling transition at 313 nm.

The spectroscopy laser used for this experiment is a 9.17 µm quantum cascade laser (QCL),

precisely locked to a CO2 laser. Given the weak nature of the two-photon transition, a Fabry-

Perot cavity placed in vacuum is used to enhance the beam intensity and maximize the inter-

action strength with the trapped ions. To ensure optimal alignment between the ions and the

�xed-mode spectroscopy beam, the ion trap is mounted on a translation stage, and its position

has been optimized.

Detection of the excited ions is carried out via Resonance Enhanced Multi-Photon Dissocia-

tion (REMPD). After excitation to the |ν = 1, L = 2⟩ state, a 213 nm laser is used to dissociate

the molecule. The dissociation cross-section at 213 nm is 72 times higher for the ν = 1 state

than for the ν = 0 state. This signi�cant di�erence enables highly state-selective detection

by monitoring the loss of ions from the trap. The loss rate is much higher if the H+
2 ions are

promoted to the ν = 1 level by the spectroscopy laser.

Utilizing a narrow-linewidth 9.17 µm laser (∼100 Hz), we aim for an unprecedented exper-

imental uncertainty of 1× 10−12. Current theoretical predictions for this transition achieve an

accuracy of 7.6× 10−12 [13].
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This high-precision measurement of the |ν = 0, L = 2⟩ → |ν = 1, L = 2⟩ transition in H+
2

will provide a direct optical determination of the proton-to-electron mass ratio, µ, thereby

contributing signi�cantly to tests of fundamental physics at the highest level of precision.

II.1 Femtosecond Lasers and Optical Frequency Combs

Femtosecond lasers emit pulses of light with durations on the order of 10−15 seconds. These

ultrashort pulses are generated via mode-locking, a technique that forces multiple longitudinal

modes of the laser cavity to oscillate with �xed phase relationships.

Mode-locking can be achieved either actively, by modulating cavity losses at the round-trip

frequency using an external signal (e.g., RF-driven electro-optic modulators), or passively, by

incorporating a saturable absorber that favors high-intensity pulse formation. Passive mode-

locking is especially e�ective with broadband gain media, enabling the simultaneous excitation

of many cavity modes. The coherent superposition of these modes leads to the formation of a

stable train of ultrashort pulses, with pulse duration τp and repetition period

Trep =
L

vg
,

where L is the cavity length and vg is the group velocity of the pulse envelope.

Figure 1.3: (a) Time-domain pulse train showing carrier-envelope phase slips; (b)
Corresponding frequency-domain comb structure with evenly spaced modes separated by frep,

o�set by the carrier-envelope o�set f0 [2].

In the frequency domain, this mode-locked pulse train corresponds to a comb of narrow
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spectral lines with frequencies given by:

νn = nfrep + f0,

where frep is the repetition rate of the pulses, n is an integer mode index, and f0 is the carrier-

envelope o�set (CEO), arising from dispersion-induced phase slips between the pulse envelope

and carrier wave. The CEO is related to the per-round-trip phase slip ∆ϕ by:

f0 =
∆ϕ

2πTrep
.

The resulting structure, an Optical Frequency Comb (OFC), is an evenly spaced set of

optical frequencies spanning hundreds of terahertz. When both frep and f0 are stabilized, this

comb acts as a precise optical ruler that can connect optical and microwave frequencies with

high accuracy

II.1.1 Beat Note Detection and Laser Locking

To stabilize laser frequencies in the experiment, �ber lasers at 1550 nm and 1051 nm are phase-

locked to speci�c modes of the optical frequency comb. Beat notes are generated by mixing

each laser with the nearest comb mode on a fast photodetector. The resulting radio-frequency

signal � the beat frequency � corresponds to the di�erence between the laser and the comb

mode.

The beat note is �rst ampli�ed using a ZFL ampli�er and then passed through a frequency

divider with division factor 8, which reduces it to a lower intermediate frequency suitable

for digital processing. This signal is compared to a reference frequency fref using a Phase-

Frequency Comparator (PFC), which generates an error signal. This error signal is processed

by a Proportional-Integral (PI) controller that adjusts the laser's injection current or cavity

length, keeping it locked to the comb.

Each laser is stabilized in a similar manner, with a tunable o�set introduced to control the

frequency separation between the two lasers. The same architecture is applied to the 1051 nm

system, allowing for precise referencing to the optical comb.

II.2 Frequency Conversion Chain

Once stabilized, the 1051 nm laser undergoes a series of nonlinear optical processes to generate

coherent ultraviolet light at 313 nm. After spectral �ltering to eliminate ampli�ed spontaneous

emission, the beam is ampli�ed to the power levels required for nonlinear conversion.

The �rst nonlinear stage is sum-frequency generation (SFG), where the 1051 nm beam and

a second 1550 nm beam are mixed in a nonlinear crystal to produce 626 nm light:

1

λ626
=

1

λ1051
+

1

λ1550
.
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The 626 nm output is then frequency-doubled via second-harmonic generation (SHG), yield-

ing ultraviolet light at 313 nm:
1

λ313
= 2 · 1

λ626
.

This narrowband UV light is used for spectroscopy and manipulation of beryllium ions

(Be+), as it is resonant with their transitions. Because the original lasers are locked to the

frequency comb, the UV output inherits the comb's frequency stability and traceability.

II.3 Experimental Setup Overview

The experiment involves high-resolution spectroscopy of state-selected H+
2 ions con�ned in a

linear RF Paul trap and sympathetically cooled via co-trapped Be+ ions. The setup comprises

�ve main components: the frequency comb, a laser frequency stabilization system, the ion trap,

the state preparation system, and the laser system for spectroscopy and detection.

� Optical Frequency Comb: The frequency comb is a 1550 nm fceo-free comb, optically

locked to a 1542 nm reference signal disseminated by the REFIMEVE �ber network [14].

The comb extends spectrally to 1900 nm and provides SI-traceable frequencies of the form

fq = qfrep with frep = 200 MHz.

� CO2 Laser Stabilization via Sum-Frequency Generation

The frequency of a 9.17 µm CO2 laser is stabilized using SFG with a 1.895 µm comb

mode in an AgGaSe2 crystal, producing 1.560 µm output. The powers involved are 18

mW (1.895 µm), 80 mW (CO2), and the resulting SFG power is ∼600 nW, with an

e�ciency of 0.7 mW/W2 [15].

The beat note with the comb provides an error signal:

fbeat = fCO2 − (q2 − q1)frep,

where q1 and q2 are integer mode numbers representing speci�c spectral lines (or modes) of

the optical frequency comb. The term (q2−q1)frep thus represents the frequency di�erence
between two chosen comb modes. Here, (q2 − q1) = 163 541. This signal is divided by

8, compared with a reference frequency via a Phase-Frequency Comparator (PFC), and

used to correct the CO2 laser frequency through a Proportional-Integral (PI) controller.
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Figure 1.4: CO2 laser frequency comb scheme [3].

� Laser Frequency Stabilization

The laser system is referenced to the SI second using a stabilized frequency comb (Toptica

DFC 200 at 1.565 µm) and the REFIMEVE ultra stable 1.542 µm source [14]. These sig-

nals are combined via Dense Wavelength Division Multiplexing (DWDM), a 25% coupler

(CP), and an Optical Circulator (OC). A photodiode detects the beat note at 89.5 MHz,

which is �ltered, monitored, and analyzed using a spectrum analyzer. The frequency

instability of the optical lock is below 2× 10−13 at 1 s.

Figure 1.5: Optical lock to REFIMEVE ultrastable signal scheme [3]
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� Ion Trap and Cooling: The RF Paul trap has a characteristic radius R0 = 3.5 mm

and operates at a drive frequency of 13 MHz with an RF voltage up to 500 V, resulting

in a trap depth of approximately 1 eV. A 313 nm laser is used to Doppler-cool the Be+

ions. The H+
2 ions are cooled sympathetically through Coulomb interaction, forming a

mixed-species crystal approximately 1.2 mm long along the z-axis. A theoretical overview

of the Paul trap operation is provided in Appendix B

Figure 1.6: Linear Paul trap with its eight electrodes and the corresponding electric
connections. [4]

Figure 1.7: Fluorescence images of typical Be+ - H+
2 ion crystals produced in the Trapped Ion

group at LKB. The blue color indicates �uorescence from laser-cooled Be+ ions, while the
encircled dark spots on the left image and the dark stripe at the center of the right image

indicate non-�uorescing H+
2 ions.

8



� State Preparation via REMPI

Figure 1.8: The arrows show the vibrational ground state preparation of H+
2 using a 3+1

REMPI scheme at 303 nm 1 , and after that the 2+1 REMPD spectroscopy 2 + 3 . The
inset shows the two-photon transition at 9.17 µm between two ro-vibrational levels [4, 3].

Although radiative decay in H+
2 is highly suppressed due to its homonuclear structure,

direct ionization methods such as electron impact would typically populate a broad distri-

bution of rovibrational states. To ensure state-selective preparation, we instead employ

a 3+1 Resonance-Enhanced Multi-Photon Ionization (REMPI) scheme at 303 nm (see

Figure 1.8).

Neutral H2 molecules in the ground state X
1Σ+

g (v = 0, L = 2) absorb three photons at 303

nm, reaching resonantly the excited state C1Πu(v = 0, L′), followed by a fourth photon

that ionizes the molecule (Fig. 1.8 step 1 ), yielding H+
2 (v = 0, L = 2) with an estimated

selectivity of 90%.

� Laser Parameters and Spectroscopy

The 303 nm radiation used for REMPI is generated via second-harmonic generation from

a pulsed dye laser. The laser operates at 20 Hz, with a pulse energy of 3�4 mJ, a pulse

duration of 10 ns, and a beam waist of w0 ≈ 10µm, resulting in peak intensities of

approximately 2.5GW/mm2.

The narrow two-photon transition at 9.17µm (step 2 in Fig. 1.8) is probed using

Doppler-free spectroscopy. The mid-infrared laser beam is coupled into a high-�nesse
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Fabry�Pérot cavity installed under vacuum around the ion trap, which cancels the �rst-

order Doppler shift.

The optical cavity provides a power build-up factor of about 160, with an input power

of 20 mW leading to an intracavity power of roughly 3.2 W. With a beam waist of

w0 ≈ 300µm at the ion location, this corresponds to an e�ective intensity of I ≈ 2P
πw2

0
≈

2.3× 107W/m2 ≈ 23W/mm2, which is the optical power e�ectively interacting with the

ions.

� State-Selective Photodissociation

State detection is performed via photodissociation using a 213 nm pulsed laser (�fth

harmonic of a YVO4 source) operating at 10 kHz with 170 mW output power. This UV

light promotes the molecule to a dissociative electronic state (Fig. 1.8 step 3 ), allowing

detection of speci�c rovibrational states.

III Objective

The objective of this internship was to support the experimental e�orts of the Trapped Ions

team at Laboratoire Kastler Brossel by developing a theoretical and numerical framework to

simulate two-photon spectroscopy in the H+
2 ion. The work focused on computing transition

amplitudes for rovibrational two-photon processes, evaluating Rabi frequencies for Raman-type

intra-rovibrational transitions, and quantifying AC Stark shifts through dynamic polarizability

calculations. These simulations provide key insights into light�matter interaction regimes rel-

evant for high-precision measurements and help optimize experimental parameters for future

determinations of the proton-to-electron mass ratio.
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Chapter 2

Theory

I Schrödinger Functions of H+
2

Understanding the wave functions of H+
2 is essential for its precise spectroscopic study. The

relevant notations for describing its states are:

� Se = 1/2: the electron spin.

� I1 = 1/2 and I2 = 1/2: the spins of the two protons.

� I = I1 + I2: the total nuclear spin.

� Le: the orbital angular momentum of the electron.

� L1 and L2: the orbital angular momentum of the two protons.

� L: the total orbital angular momentum.

It is crucial to note that due to the Pauli symmetrization principle, and considering that the

electron occupies the ground 1sσg state, the total nuclear spin I is related to the orbital angular

momentum L. Speci�cally, I = 0 when L is even, and I = 1 when L is odd. This spin-symmetry

constraint signi�cantly in�uences the allowed transitions and spectroscopic properties of H+
2 .

I.1 Radial Wave Functions

The hydrogen molecular ion, H+
2 , is a three-body system governed primarily by Coulomb

interactions. In the laboratory frame, such a system can be described by the non-relativistic

Hamiltonian:

H = −
3

∑

i=1

1

2mi

∇2
Ri

+
∑

1≤i<j≤3

qiqj
|Ri −Rj|

, (2.1)

where mi, qi, and Ri denote the mass, charge, and position of the i-th particle, respectively.

We assume that particles 1 and 2 are identical nuclei (each with charge Ze and mass M),

and particle 3 is the electron with mass me and charge −e.
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To solve the Schrödinger equation for this system, Hylleraas [16] introduced three interpar-

ticle distances as independent variables: r1, r2, and r12, which characterize the shape and size

of the triangle formed by the three particles.

Since the total momentum P = p1 + p2 + p3 is conserved, we can separate out the center-

of-mass motion. De�ning the center-of-mass coordinate as

X =
1

∑

imi

3
∑

i=1

miRi,

and introducing internal coordinates ri = Ri − X, the kinetic energy in the center-of-mass

frame becomes:

T = −
3

∑

i=1

1

2µi

∇2
ri
,

where µi are the appropriate reduced masses.

Switching to atomic units via the substitutions r = a0r̃, p = ℏ

a0
p̃, with the Bohr radius

de�ned by

a0 =
4πε0ℏ

2

mee2
,

the dimensionless Hamiltonian becomes:

Ĥ =
1

2µ

(

∇2
1 +∇2

2

)

+
1

me

∇1 · ∇2 +
1

me

(

1

r̃12
− 1

r̃1
− 1

r̃2

)

. (2.2)

The total angular momentum operator is given by:

L = −ir1 ×∇r1 − ir2 ×∇r2 .

To solve the eigenvalue problem associated with the Hamiltonian Ĥ, a variational ap-

proach is employed by seeking simultaneous eigenstates of a set of commuting operators:

{Ĥ,L2, Lz, Π̂}, where L2 and Lz are the total orbital angular momentum and its projection

along the quantization axis, respectively, and Π̂ is the parity operator. For systems with well-

de�ned orbital angular momentum quantum number L, the eigenvalues of Π̂ are given by (−1)L,

re�ecting the symmetry of the wavefunction under spatial inversion.

Following the methodology presented in [17], the time-independent Schrödinger equation is

reformulated into a linear system of coupled di�erential equations. These equations are then

solved numerically to obtain the energy eigenvalues and corresponding eigenfunctions. In the

chosen coordinate system, the total wavefunction ΨΠ
LM(R, r1) can be expanded in a basis of

coupled spherical harmonics and radial functions as

ΨΠ
LM(R, r1) =

∑

l1,l2

Y l1l2
LM(R̂, r̂1)G

LΠ
l1l2

(R, r1, r2), (2.3)

where Y l1l2
LM(R̂, r̂1) are the bipolar harmonics that account for the angular dependencies, and

the functions GLΠ
l1l2

(R, r1, r2) describe the radial and interparticle correlations in the system.
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The radial functions are expanded as

GLΠ
l1l2

(R, r1, r2) =
N
∑

n=1

[

CnRe
(

e−αnR−βnr1−γnr2
)

+DnIm
(

e−αnR−βnr1−γnr2
)]

.

This choice of basis ensures the correct angular momentum and parity properties, allowing for

an e�cient and accurate variational treatment of the three-body problem.

By convention, the total energy of a quantum system is measured relative to the dissociation

threshold, de�ned as the limit in which all particles are in�nitely separated and at rest. In

this limit, the potential energy vanishes and the kinetic energy is zero (see Equation (2.1)),

corresponding to a total energy of zero. This choice of energy origin allows bound-state energies

to be interpreted directly as negative quantities, with deeper negative values indicating stronger

binding.

In atomic units (a.u.), the unit of energy (known as the Hartree) is de�ned by setting the

fundamental constants ℏ = me = e = 1, which leads to the expression Eh = mec
2α2 = ℏ

2

mea20
.

The Rydberg unit of energy is de�ned as exactly half a Hartree 1 Ry = 1
2
Eh ≈ 13.60569312 eV

according to CODATA22 [18]. Therefore, any energy expressed in atomic units can be converted

to electronvolts using the relation E [eV] = E [a.u.]× 2Ry.

In practical few-body calculations, such as for the H+
2 ion, the Hamiltonian is rescaled using

dimensionless units based on a reduced mass normalization. The code handed for this task,

developed by V.I.Korobov and discused later in Appendix A, de�nes a scaling factor S = min(mi)
me

,

where min(mi) is the smallest mass in the system (typically the electron massme). This ensures

that the smallest particle has unit mass and all other masses are rescaled accordingly. The

corresponding energy scaling factor is then de�ned as ES = 2Ry · S. This factor allows for

conversion of dimensionless eigenvalues ϵ obtained from the rescaled Hamiltonian into physical

energy units.

Within the Born�Oppenheimer approximation, the asymptotic value of the potential energy

curve for the 1sσg electronic ground state corresponds to the ionization energy of the hydrogen

atom. Thus, the dissociation energy of a given rovibrational state is measured with respect to

this asymptote, not from the zero-energy continuum. To approximate this asymptotic reference

energy, the code computes an analytic estimate:

Eref = −Ry ·
(

Z1Z3

n

)2

· m1m3

m1 +m3

,

where Z1 and Z3 are the charges, andm1, m3 are the masses of the two interacting particles (the

proton and electron). The principal quantum number n re�ects the energy level of the hydrogen-

like system; for the ground state, n = 1. This formula gives a reasonable approximation for the

asymptotic energy of the molecular potential curve in atomic units. For the case of H+
2 , the

result is approximately Eref ∼ −0.49972783971 a.u.

13



The total physical energy of a bound state is then recovered from the rescaled eigenvalue

ϵ via E [eV] = ϵ · ES − Eref. Using this variational approach, we �nd the following results for

eigenvalues and dissociation energies of two rovibrational states:

� For (ν = 0, L = 2): ϵ = −0.59634520549099816537, Edis = −2.6290924577 eV

� For (ν = 1, L = 2): ϵ = −0.58640363153225673566, Edis = −2.3585684489 eV

Subtracting the reference energy, these correspond to dissociation energies of approximately

Edis(ν = 0, L = 2) ≈ −0.0966173658 a.u.

Edis(ν = 1, L = 2) ≈ −0.0866757918 a.u.

below the asymptotic limit. These values, equivalent to roughly −2.6 eV and −2.3 eV, lie near

the bottom of the 1sσg potential well. This con�rms that the computed states correspond

to low-lying rovibrational levels of H+
2 . For comparison, I also computed the lowest energy

bound state in this potential has a dissociation energy of approximately −2.65069 eV. The

close agreement demonstrates that the numerical method accurately reproduces the strong

binding characteristic of the ground vibrational manifold.

The dissociation energy di�erence between the ν = 0 and ν = 1 levels is∆Edis = 0.270524 eV.

To resolve this energy spacing via two-photon spectroscopy, the required frequency resolution

must be on the order of

∆Edis

2h
≈ 6.54124

2
× 1013 Hz = 3.27062× 1013 Hz = 32.7062 THz. (2.4)

This sets a target linewidth for the two-photon transition, and highlights the precision needed

in the laser frequency stabilization for accurate rovibrational spectroscopy.

I.2 Magnetic and Hyper�ne Interactions

Although relativistic e�ects in this light, three-body system are quantitatively small, their

inclusion is essential for achieving the ultra-high precision required in modern spectroscopic ex-

periments. A widely adopted approach for incorporating relativistic corrections in such systems

is to begin with the non-relativistic Hamiltonian HNR, which accurately captures the dominant

dynamics, and systematically add perturbative corrections arising from relativistic e�ects.

These corrections are typically divided into spin-independent and spin-dependent contribu-

tions. The spin-independent terms, denoted by V diag, primarily account for relativistic kine-

matic corrections and modi�cations to the Coulomb interaction. The spin-dependent terms

include both the internal spin interactions, V spin, and the interaction with an external mag-

netic �eld, V mag. The full Hamiltonian can therefore be written as

H = HNR + V diag + V spin + V mag
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Figure 2.1: Order-of-magnitude diagram of the energy scales relevant in this work. The
hyper�ne structure lies far below the rovibrational splittings and requires high-precision

modeling to resolve.

The leading-order relativistic corrections are given by the Breit-Pauli Hamiltonian, which

contributes at order α2 relative to the non-relativistic energy. We focus on V spin + V mag. The

spin structure of the rovibrational state (ν, L), where ν and L are the vibrational and total

orbital momentum quantum numbers, is computed in �rst-order perturbation theory using

an e�ective Hamiltonian Hhfs, obtained by averaging V spin + V mag over the spatial degrees of

freedom [6].

For high-precision comparisons, the relevant frequency intervals span a broad range. In this

system, transitions correspond to intervals on the order of 65 × 1012 Hz, or approximately 33

Hz in two-photon transitions. These values translate to energies in electron-volts via E = hν,

and corresponding wavelengths can be calculated using λ = c
ν
.

Hhfs = bF (I · Se) + ce(L · Se) + cI(L · I)

+
d1

(2L− 1)(2L+ 3)

(

2

3
L2(I · Se)− [(L · I)(L · Se) + (L · Se)(L · I)]

)

+
d2

(2L− 1)(2L+ 3)

(

1

3
L2I2 − 1

2
(L · I)− (L · I)2

)

.

(2.5)

Neglecting relativistic and radiative corrections, the interaction of the H+
2 ion with an ex-

ternal magnetic �eld can be described, to linear order in the �eld strength, by the Zeeman

Hamiltonian:

HZ = geµBSe ·B− gpµpI ·B+ µBLe ·B− µp(L1 + L2) ·B. (2.6)
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The total e�ective Hamiltonian to be diagonalized is thus composed of the hyper�ne struc-

ture Hamiltonian and the Zeeman interaction:

H = Hhfs +HZ . (2.7)

If I ̸= 0, the strongest coupling is the spin-spin electron- proton interaction, i.e., the �rst term

in Eq. (2.9). This interaction determines the principal splitting of the rovibrational levels of

H2
+. With this consideration in mind, the preferable coupling scheme of angular momentum

operators is

F = Se + I, J = L+ F. (2.8)

If the nuclear spin vanishes (I = 0). the orbital angular momentum quantum number

L is even, and within this coupling scheme the hyper�ne Hamiltonian (2.5) simpli�es to the

spin-orbit coupling form

Hhfs = ceL · Se =
ce
2

(

J2 − L2 − S2
e

)

. (2.9)

For (I = 0, L = 2), there are 2L + 1 = 5 magnetic sublevels of orbital angular momentum,

each of which is coupled to a two-level spin-1/2 system, giving 5×2 = 10 total states. We work

in the coupled basis |v, L, Se, J,MJ⟩, where v is the vibrational quantum number. number. For

each value of J , MJ spans from −J to +J in integer steps.

The basis set used in the following calculations is ordered by increasing total angular mo-

mentum J̄ , and, for each �xed J̄ , by increasing magnetic quantum number MJ , as illustrated

below:

{|v, L, Se = 1/2, J = 3/2,MJ = −3/2⟩ , |v, L, Se = 1/2, J = 3/2,MJ = −1/2⟩ ,
|v, L, Se = 1/2, J = 3/2,MJ = 1/2⟩ , |v, L, Se = 1/2, J = 3/2,MJ = 3/2⟩ ,

|v, L, Se = 1/2, J = 5/2,MJ = −5/2⟩ , |v, L, Se = 1/2, J = 5/2,MJ = −3/2⟩ ,
|v, L, Se = 1/2, J = 5/2,MJ = −1/2⟩ , |v, L, Se = 1/2, J = 5/2,MJ = 1/2⟩ ,
|v, L, Se = 1/2, J = 5/2,MJ = 3/2⟩ , |v, L, Se = 1/2, J = 5/2,MJ = 5/2⟩} .
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I.3 Zeeman Splitting

L ν J = L− 1/2 J = L+ 1/2 ⟨ν, L∥Le∥ν, L⟩/
√
2L+ 1 ⟨ν, L∥L1∥ν, L⟩/

√
2L+ 1 grot

2
0 -63.2438 42.1625 1.069× 10−4 1.22469 0.9198

1 -59.3574 39.5716 1.193× 10−4 1.22469 0.9105

Table 2.1: Hyper�ne splittings (in MHz) and reduced matrix elements of Le and L1 (divided
by

√
2L+ 1) for the rovibrational levels (ν, L) with L = 2 and ν = 0, 1 of H+

2 . The values of
⟨⟨Ltot⟩⟩ are not explicitly listed, but the last column shows the corresponding rotational g

factors. Data from [6, 7].

The Hamiltonian H in equation (2.7) is diagonalized using a Mathematica program I developed,

following the method described in [19]. Employing the hyper�ne coe�cients listed in Table 2.1,

the full Hamiltonian matrix is constructed by combining contributions from the spin�orbit,

rotational, and hyper�ne operators: Se, L, and Hhfs. Diagonalizing this matrix yields both

the energy eigenvalues and corresponding eigenstates. All energies are converted to frequency

units via E/h, ensuring direct comparability with spectroscopic measurements. The resulting

eigenstates are superpositions of basis states sharing the same magnetic quantum number MJ

but di�ering in total angular momentum J . In particular, the two states with MJ = ±5/2

remain unmixed, while the remaining eight states appear as linear combinations of the form:

|ν, L, Se, I, F, J̄ ,MJ⟩ = C5/2 |ν, L, Se, J = 5/2,MJ⟩+ C3/2 |ν, L, Se, J = 3/2,MJ⟩ .

To label these mixed states, we de�ne J̄ as the J value corresponding to the largest coe�cient

in magnitude, and MJ remains as a good quantum number. This is because with B = Bk̂,

rotational symmetry is broken except around the z-axis, so Jz commutes with the Hamiltonian

and MJ remains conserved.
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Figure 2.2: Energy levels of the hyper�ne states for both rovibrational levels as a function of
the applied magnetic �eld B in the range 0�200 Gauss.

Figure 2.3: Energy levels of the hyper�ne states for both rovibrational levels as a function of
the applied magnetic �eld B in the range 0�2 Gauss.
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In the range 0�200 Gauss (Figure 2.2), the energy levels exhibit signi�cant curvature as

the magnetic �eld increases. This behavior arises because the electronic Zeeman interaction

becomes the dominant term in the Hamiltonian, leading to the progressive decoupling of the

orbital angular momentum L and the electron spin Se. As a consequence, J is no longer a good

quantum number, and the eigenstates become admixtures of the original J = 3/2 and 5/2 basis

states. In the high-�eld limit, the levels regroup according to the spin projection Se = ±1/2,

and their energies are primarily determined by the electronic Zeeman e�ect.

The states with J = 5/2, M = ±5/2 retain a pure character (mixing coe�cient 100%)

across the entire �eld range because they correspond to a unique combination of L and Se.

Their energies therefore vary linearly with B, even at high �elds. For the other states, the

mixing coe�cients approach 50% as the �eld increases, re�ecting the transition to the high-

�eld regime where the eigenstates become nearly equal mixtures of the low-�eld J = 3/2 and

5/2 states.

At low magnetic �elds (Figure 2.3), the hyper�ne interaction dominates, and the eigenstates

remain close to pure J states. The Zeeman e�ect introduces small linear shifts proportional to

B, and the energy splittings are primarily determined by the coupling between L and Se. The

mixing coe�cients remain near 100%, indicating that the states largely preserve this low-�eld

character.

II Two-Photon Spectroscopy

Two-photon spectroscopy is a powerful tool for high-precision measurements, particularly in

systems like H+
2 where electric dipole transitions are forbidden between certain states due to

selection rules. In such cases, transitions proceed via the simultaneous absorption of two pho-

tons, described within second-order perturbation theory. A convenient framework for analyzing

these transitions is provided by the dressed atom formalism [20], which naturally incorporates

essential features such as dynamic Stark shifts. In this formalism, the interaction between the

atom and the light �eld is treated in a way that highlights how these shifts and the two-photon

coupling arise from the applied �elds.

II.1 Two Photon Operator

The irreducible tensor operator formalism provides a powerful framework for analyzing two-

photon transitions between two states |g⟩ and |e⟩, as it enables a straightforward identi�cation

of selection rules and simpli�es the calculation of transition amplitudes. To describe such

transitions in H+
2 under arbitrary polarization con�gurations, we begin by introducing the

e�ective two-photon transition operator:

Qϵ1ϵ2 = d · ϵ1
1

H − E
d · ϵ2, (2.10)

where d is the electric dipole operator, H is the full atomic Hamiltonian, and E represents

the energy of the intermediate virtual states. These virtual states are not real, observable

19



eigenstates of the system, but rather o�-resonant intermediate levels that mediate the two-

photon transition via second-order perturbation theory (see Figures 2.4, 2.5, 2.6 for a schematic

representation of the role of virtual states).

The irreducible tensor operator formalism provides a powerful framework for analyzing two-

photon transitions between two states |g⟩ and |e⟩, as it enables a straightforward identi�cation

of selection rules and simpli�es the calculation of transition amplitudes. To describe such

transitions in H+
2 under arbitrary polarization con�gurations, we begin by introducing the

e�ective two-photon transition operator:

Qϵ1ϵ2 = d · ϵ1
1

H − E
d · ϵ2, (2.11)

where d is the electric dipole operator, H is the full atomic Hamiltonian, and E represents the

energy of the intermediate virtual states. The polarization vectors ϵ1 and ϵ2 describe the two

excitation �eld polarizations interacting with the ion.

To account for the indistinguishability of the absorption order, the physical observable

involves the symmetrized operator:

SQϵ1ϵ2 =
1

2
(Qϵ1ϵ2 +Qϵ2ϵ1) . (2.12)

It is convenient to express both the dipole operator and the polarization vectors in the spher-

ical basis. The components of the dipole operator are then written as dq, where q = −1, 0,+1

corresponds to circularly polarized (σ−, π, σ+) transitions. Accordingly, the polarization vectors

ϵ1, ϵ2 are replaced by their spherical components q1, q2, and the operator becomes:

Qq1q2 = dq1
1

H − E
dq2 ;

SQq1q2 =
1

2
(Qq1q2 +Qq2q1) (2.13)

The operatorQq1q2 is formed from the product of two dipole operators. It can be decomposed

into irreducible tensor components of rank k = 0, 1, 2 using angular momentum coupling:

Q(k)
q =

∑

q1,q2

⟨kq|11q1q2⟩Qq1q2 , k = 0, 1, 2. (2.14)

where q = q1 + q2, and ⟨kq|11q1q2⟩ are Clebsch�Gordan coe�cients. The inverse relation

allows one to re-express the symmetrized two-photon operator in terms of these irreducible

components:

SQq1q2 =
2

∑

q=−2

a(2)q Q(2)
q + a

(0)
0 Q

(0)
0 . (2.15)

where the a(k)q coe�cients are given in Table 2.2.

This decomposition is crucial for determining selection rules, evaluating light shifts, and

computing transition matrix elements.
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σ− π σ+

q1 = −1 q1 = 0 q1 = +1

σ− a
(2)
q = δq,−2 a

(2)
q =

√
2
2
δq,−1 a

(2)
q =

√
6
6
δq,0

q2 = −1 a
(0)
0 = 0 a

(0)
0 = 0 a

(0)
0 =

√
3
3

π a
(2)
q =

√
2
2
δq,−1 a

(2)
q =

√

2
3
δq,0 a

(2)
q =

√
2
2
δq,1

q2 = 0 a
(0)
0 = 0 a

(0)
0 = −

√
3
3

a
(0)
0 = 0

σ+ a
(2)
q =

√
6
6
δq,0 a

(2)
q =

√
2
2
δq,1 a

(2)
q = δq,2

q2 = +1 a
(0)
0 =

√
3
3

a
(0)
0 = 0 a

(0)
0 = 0

Table 2.2: Values of the coe�cient a(k)q for all combinations of the standard polarizations.

II.2 Transition Matrix Elements

The central quantity in both two-photon transition probabilities and Raman Rabi frequencies is

the matrix element of the symmetrized two-photon operator SQq1q2 between coupled hyper�ne

states. Using the Wigner�Eckart theorem, the matrix element between the initial state |ϕ⟩ =
|ν, L, Se, I, F, J,MJ⟩ ≡ |gJ,MJ⟩ and �nal state |ψ⟩ = |ν ′, L′, Se, I

′, F, J ′,M ′
J⟩ ≡ |eJ ′,M ′

J⟩ can
be expressed as

⟨ϕ|S Qq1q2 |ψ⟩ =
∑

k

a(k)q ⟨J ′M ′
J |kqJMJ⟩

⟨gJ ||Q(k)||eJ ′⟩√
2J + 1

, (2.16)

where the reduced matrix element can be separated into a purely angular part and a rovibra-

tional matrix element [21]:

⟨g, J ||Q(k)||e, J ′⟩ = δI,I′(−1)J
′+L+F+k

√
2J + 1

√
2J ′ + 1

×
{

L k L′

J ′ F J

}

⟨ν, L||Q(k)||ν ′, L′⟩
(2.17)

The symmetrized two-photon operator SQq1q2 can drive both rovibrational transitions, where

the molecule moves from ν to ν ′ ̸= ν, and Raman (intra-rovibrational) transitions, where ν ′ = ν

but internal hyper�ne states change.

Rovibrational transitions govern the population transfer between di�erent vibrational levels

and determine the absolute excitation strengths. These processes occur in an incoherent regime,

where individual excitation events are not phase-related and coherence between quantum states

is not maintained. In contrast, Raman transitions describe coherent coupling between hyper�ne

states within the same vibrational level, enabling controlled state evolution characterized by

Rabi oscillations. While the incoherent regime is relevant for estimating transition rates and

population redistribution across vibrational levels, the coherent regime is essential for manipu-

lating superpositions and driving precise dynamics within a single rovibrational manifold.
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II.2.1 Two-Photon Transition Probability

Figure 2.4: Two-photon rovibrational transition at resonance.

For a laser of intensity I, we de�ne the two-photon transition probability per unit time P

between an initial hyper�ne state |ϕ⟩ and a �nal state |ψ⟩ (with di�erent rovibrational quantum
numbers ν ̸= ν ′) as [6]:

P =

(

4πa30
ℏc

)2
4

Γf

I2
∣

∣

∣
⟨ϕ|S Qq1q2 |ψ⟩

∣

∣

∣

2

, (2.18)

where a0 is the Bohr radius and Γf is the instrumental width of the transition. The instrumental

width Γf represents the e�ective linewidth of the observed transition. It sets the frequency

window within which the transition can be e�ciently driven.

The transition probability P is directly proportional to the square of the two-photon ma-

trix element ⟨ϕ|S Qq1q2 |ψ⟩, which encodes the coupling strength between the two states via

virtual intermediate levels. This formulation allows us to identify favorable quantum numbers

and polarization con�gurations for driving e�cient population transfer between rovibrational

states. Moreover, P re�ects the interplay between rotational-vibrational dynamics and angular

momentum selection rules as described by second-order perturbation theory.
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II.2.2 Two-Photon Rabi Frequency

Figure 2.5: Raman transition occurring within the same rovibrational state and involving
di�erent hyper�ne sublevels.

When the two-photon detuning is set near zero within the same rovibrational level (ν = ν ′),

the system undergoes coherent Rabi oscillations between two hyper�ne states |g⟩ and |e⟩. We

note that the generalized Rabi frequency can be written as

Ωge =
4πa30I

hc
| ⟨g|S Qq1q2 |e⟩ |, (2.19)

correcting the prefactor compared to the expression in [5].

The Rabi frequency characterizes the strength of coherent coupling between quantum states

under continuous laser driving. Its computation is restricted to transitions within the same

vibrational level because in this regime, energy conservation implies negligible detuning. This

allows one to treat the dynamics in terms of population oscillations governed by Ω.
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II.2.3 Polarizability and Light Shifts

Figure 2.6: ac Stark shifts experienced by a hyper�ne level under two-photon illumination.

The same matrix formalism used to compute transition amplitudes allows us to determine

the dynamic polarizability of a hyper�ne state |n⟩ under two-photon illumination at angular

frequency ω.

In a spherical tensor basis, the dynamic polarizability becomes

αn(ω) = −4πa30
∑

q1,q2

ϵq1ϵq2 ⟨n|S Qq1q2(En + ℏω) +S Qq1q2(En − ℏω) |n⟩ . (2.20)

Due to selection rules, only terms with q1 + q2 = 0 contribute to the expectation value

⟨n|S Qq1q2 |n⟩, which ensures angular momentum conservation in the two-photon interaction.

Consequently, the relevant polarization combinations are:

� (q1, q2) = (0, 0) corresponding to π�π light,

� (q1, q2) = (+1,−1) and (−1,+1), corresponding to σ+�σ− and σ−�σ+ combinations.

This implies that circular polarization pairs of opposite handedness, such as (σ+, σ−) and

(σ−, σ+), contribute to the polarizability, as long as the electric �eld contains both components.

Conversely, mixed combinations like (π, σ±) or (σ±, π), where q1+q2 ̸= 0, do not contribute due

to orthogonality. Thus, for an electric �eld with polarization components ϵ⃗ = ϵ0ê0 + ϵ+ê+1 +

ϵ−ê−1, the light shift of state |n⟩ becomes

∆En = −1

4

(

|ϵ0|2 ⟨n|S Qππ |n⟩+ ϵ+ϵ
∗
− ⟨n|S Qσ+σ− |n⟩+ ϵ∗+ϵ− ⟨n|S Qσ−σ+ |n⟩

)

. (2.21)

Finally, the di�erential light shift of a two-photon transition between states |g⟩ and |e⟩,
evaluated at ωge =

Ee−Eg

2ℏ
, is given by

∆Ege = −1

4

∆αge
ϵ

c
, ∆αge

ϵ = αe
ϵ(ωge)− αg

ϵ (ωge). (2.22)
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Chapter 3

Methods and Results

I Transition Energies

For I = 0, the nuclear spin terms vanish, and the Zeeman Hamiltonian (2.6) simpli�es to

HZ ≈ geµBSe · B + µBL · B. Together with the hyper�ne interaction Hhfs = ceL · Se,

the total Hamiltonian (2.7) governs the energy shifts as a function of the magnetic �eld

∆E(B) = Ee(B) − Eg(B). Following the approach of [19], I computed the eigenvalues and

eigenstates for the |ν = 0, L = 2⟩ and |ν = 1, L = 2⟩ levels using Mathematica. By applying the

appropriate selection rules, I extracted the corresponding two-photon transition energies, given

by ∆E(B)/2.

In the low-�eld regime (Figure 3.2), the hyper�ne interaction dominates. The eigenstates

are well described by the quantum numbers J and MJ , and the Zeeman interaction introduces

small perturbative corrections:

E(B) ≈ E0 + γBMJ ,

where γ is an e�ective coupling constant that involves the action of L and Se. Selection rules

imposeM ′
J =MJ + q, so the transition energy varies approximately as ∆E(B) ∝ (M ′

J −MJ)B.

Thus, for q = q1+q2 ̸= 0, the transition energy shows a linear dependence on B. In contrast, for

q = 0 transitions, whereM ′
J =MJ , the linear terms cancel in the energy di�erence, and the shift

is dominated by higher-order contributions (typically quadratic in B) ∆E(B) ≈ ∆E(0)+αB2.

In the high-�eld regime (Figure 3.1), the Zeeman interaction becomes the dominant term.

The magnetic �eld e�ectively decouples L and Se, and the energies are primarily determined

by their independent contributions:

E(B) ≈ E0 + geµB⟨Se⟩B + µB⟨L⟩B + (small corrections from hyper�ne interaction).

⟨Se⟩ and ⟨L⟩ are the e�ective contributions from spin and orbital angular momentum in

the states. The hyper�ne interaction still contributes as a perturbation, introducing residual

coupling between levels with similar energy. This residual coupling induces level repulsion and

leads to nonlinear bending in the energy curves as a function of the magnetic �eld.
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Figure 3.1: Calculated two-photon transition energies as a function of magnetic �eld (0�15 G)
for |J̄ ,MJ⟩ → |J̄ ,M ′

J⟩ transitions, shown for polarization components q = 0 (left) and q = 1
(right). For q = 1, the transitions exhibit a dominant linear Zeeman splitting, while for q = 0,
nonlinear behavior persists, especially in states with strong hyper�ne mixing. The region
highlighted by a square corresponds to the low-�eld regime explored in detail in Figure 3.2.

Note: The y-axis units di�er among the panels and must be read carefully.
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Figure 3.2: Zoomed-in view of the low-�eld regime (0�0.1 G) corresponding to the boxed
region in Figure 3.1. In this regime, the hyper�ne interaction dominates. For q = 1, the

Zeeman shifts are small but linear, while for q = 0, the transition energies exhibit
predominantly nonlinear (quadratic) dependence on B, characteristic of mixed states. Note:

The y-axis units di�er among the panels and must be read carefully.
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As a result, both q = 0 and q ̸= 0 transitions exhibit nonlinearities at high magnetic

�elds. For q ̸= 0 transitions, the transition energies retain a strong linear dependence on

B, with nonlinearity appearing only as a small correction at larger �elds. In contrast, for

q = 0 transitions (where the leading linear contributions to the energy di�erence cancel due

to ∆MJ = 0) the nonlinear behavior stemming from hyper�ne-induced level mixing becomes

more pronounced.

This distinction is clearly re�ected in our numerical results: for q = 0 transitions, the energy

shifts remain extremely small even at nonzero �elds, with values ≲ 6 kHz at B = 0.1 G. In

contrast, q = 1 transitions exhibit shifts on the order of 30 kHz at the same �eld strength,

nearly 5000 times larger (see Figure 3.2). This stark di�erence highlights the dominant role of

linear Zeeman shifts in ∆MJ ̸= 0 transitions and underscores the sensitivity of q = 0 transitions

to second-order (and higher) perturbative e�ects arising from residual hyper�ne couplings.

II Spinless Matrix Elements

As discussed in Section I and Appendix A, the resonance energies of few-body quantum systems,

such as three-body Coulombic systems, are obtained by transforming the Schrödinger equation

into a generalized matrix eigenvalue problem, which is then solved numerically. The code used

in this work relies on basis functions optimized for rapid convergence, and experience with

this code suggests that basis sizes in the range of N = 550�900 are su�cient for achieving the

required accuracy. For the present calculations, I used these standard values, which provide a

good balance between computational cost and precision. Tests with slightly larger N con�rmed

that the results did not change signi�cantly, indicating that the chosen basis size is adequate

for transition probability calculations.

The reduced matrix elements ⟨vL||Q(k)||v′L′⟩ are computed numerically by summing over

contributions from intermediate states with angular momentum L′′ = L − 1, L, L + 1. These

terms are evaluated using the dipole operator

d =
∑

ZaRa,

where the sum runs over all particles a (e.g., the nuclei and electron), with Za the charge

number and Ra the position of particle a. The three contributions are:

a− = −
∑

v′′

⟨vL| d |v′′L− 1⟩ ⟨v′′L− 1| d |v′L′⟩
(2L+ 1)(2L′ − 1)(ω − Ev′′L−1)

, (3.1)

a+ = −
∑

v′′

⟨vL| d |v′′L+ 1⟩ ⟨v′′L+ 1| d |v′L′⟩
(2L+ 1)(2L′ + 1)(ω − Ev′′L+1)

, (3.2)

a0 =
∑

v′′

⟨vL| d |v′′L⟩ ⟨v′′L| d |v′L′⟩
(2L+ 1)(2L′ + 1)(ω − Ev′′L)

, (3.3)

where Ev′′L′′ is the energy of the intermediate state |v′′L′′⟩, and ω is the photon angular fre-

quency. For two-photon transitions, the photon energy is ω = (EvL − Ev′L′)/2. In our cal-

culations, we consistently use the reduced matrix elements ⟨vL|Q(k)|v′L′⟩√
2L+1

rather than the bare
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⟨vL|Q(k) |v′L′⟩. The scalar (k = 0) and quadrupole (k = 2) components of the operator are

given by [5]:

⟨vL|Q(0) |v′L′⟩√
2L+ 1

= −
√
3

3
(a− + a0 + a+) , (3.4)

⟨vL|Q(2) |v′L′⟩√
2L+ 1

= − 1√
6

√

(2L+ 3)(2L− 1)L(L+ 1)

×
[

a−
L(2L− 1)

− a0
L(L+ 1)

+
a+

(2L+ 3)(L+ 1)

]

.

(3.5)

Figure 3.3: Reduced Matrix Elements ⟨vL||Q(k)||v′L′⟩ ≡ ⟨vL||Q(k)||v′L′⟩ /(
√
2L+ 1) for the

Raman Rabi frequency calculations for the states |ν = 0, L = 2⟩ (top) and |ν = 0, L = 2⟩
(bottom) across di�erent wavelengths. The red-dotted line represents the static polarizability

(λ→ ∞) found in [5].
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Since the two-photon transition between rovibrational states is a resonant process, we adopt

a resonant wavelength of 9.15µm to compute the corresponding matrix elements. Our results

for the reduced two-photon matrix elements are ⟨0 2||Q(0)||1 2⟩ = −0.547278, ⟨0 2||Q(2)||1 2⟩ =
0.422419. In comparison, Jean-Philippe Karr reports in Ref. [5] the values⟨0 2||Q(0)||1 2⟩ =

−0.4239, ⟨0 2||Q(2)||1 2⟩ = 0.3119.

Although the polarisabilities computed for each rovibrational level match perfectly with

those in Ref. [5] as seen in Figure 3.3, the values of the two-photon matrix elements show

a discrepancy. Since both results were obtained using the same computational framework,

this di�erence likely arises from di�erences in numerical precision, integration parameters, or

implementation details in the evaluation of the two-photon operator. For instance, di�erences

in the choice of energy reference point, level of convergence, or intermediate state truncation

could impact the matrix elements even if the underlying physics and code are equivalent.
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III Two-Photon Probabilites per Unit Time

Using a Mathematica code that I developed to compute the two-photon operator matrix ele-

ments, based on the formalism outlined in Section I.3 and Eqs.(2.16) and (2.17), I analyzed

two-photon rovibrational transitions in H+
2 . My calculations focus on initial states with ν = 0,

examining the dependence on magnetic quantum numbers J̄ and MJ , as well as on various

photon polarization combinations (q1, q2). The transition wavelength is set to 9.15, µm, and I

varied the external magnetic �eld from 0 to 1 Gauss. For clarity, I present the results using the

notation |J̄ ,MJ⟩ → |J̄ ′,M ′
J⟩, which is shorthand for |ν = 0, J̄ ,MJ⟩ → |ν = 1, J̄ ′,M ′

J⟩.
It's possible to normalize the comparison across all transitions under the assumption of equal

light intensity and being in resonant regime according to Equation (2.18), thus we can directly

interpret the squared matrix elements |⟨SQq1q2⟩|2 as relative transition probabilities. These

values re�ect the e�ciency of driving rovibrational population transfer, modulated by the over-

lap of angular momentum states, dipole selection rules, and the symmetry of the polarization

combination.

III.1 General trends

The following �gures show the calculated spectra for di�erent polarization con�gurations. Each

set of four panels corresponds to a speci�c polarization pair, organized as follows: left column,

B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with |3/2,MJ⟩ → |3/2,M ′
J⟩,

bottom row, transitions with |5/2,MJ⟩ → |5/2,M ′
J⟩. Please note that the labels within each

panel are local and are not meant to be compared directly between panels.

The following behaviors re�ect the two-photon selection rule ∆M = q1 + q2, where qi is the

angular momentum of photon i (0 for π, ±1 for σ±).

� (π, π) polarizations consistently yield the highest transition probabilities. This is ex-

pected, as π polarizations favor ∆M = 0 transitions, where selection rules and Clebsch-

Gordan coe�cients strongly support no change in magnetic quantum number. Extremal

magnetic sublevels (|M | = J̄) exhibit the highest |⟨SQq1q2⟩|2, reaching up to ∼ 0.3 a.u.

for J̄ = 5/2 and ≳ 0.15 a.u. for J̄ = 3/2. Transitions involving central |M | decrease
below 0.1 a.u. but remain signi�cant compared to polarizations where q1 + q2 ̸= 0.

� (σ±, σ∓) also support ∆M = 0 transitions but via di�erent intermediate-state couplings,

leading to smaller probabilities than (π, π) through an 'opposite' behaviour since transi-

tions involving central |M | dominates this time.

� (π, σ±) or (σ±, π) combinations lead to weak |⟨SQq1q2⟩|2, as they mix ∆M = 0 and

∆M = ±1 contributions, which couple less e�ciently resulting in weaker angular momen-

tum couplings. We have |⟨SQq1q2⟩|2 around 0.02 a.u. - 0.038 a.u. for outer-inner sublevel

transitions while opposite M transitions are strongly suppressed.

� (σ±, σ±) produce small but noticeable |⟨SQq1q2⟩|2 for ∆M = ±2 transitions, in agreement

with angular momentum selection rules. We reach values around 0.04 a.u. for J̄ = 3/2

and 0.068 a.u. for J̄ = 5/2.
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(a) (b)

(c) (d)

(e) Polarization con�guration (π, π)

(f) (g)

(h) (i)

(j) Polarization con�guration (σ+, π)

Figure 3.4: Two Photon Rovibrational Transitions for two polarization con�gurations. Each
subpanel shows the corresponding magnetic �eld strength and transition type. Local labels

are not comparable across panels.
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(a) (b)

(c) (d)

Figure 3.5: Two Photon Rovibrational Transitions for (σ+, σ+) polarization con�guration.
Each subpanel shows the corresponding magnetic �eld strength and transition type. Local

labels are not comparable across panels.

III.2 Behavior for J̄ = 3/2

For (π, π), the most probable transitions are those that conserveM , speci�cally |3/2,±3/2⟩ →
|3/2,±3/2⟩, with |⟨SQq1q2⟩|2 around 0.16 a.u. for magnetic �elds below 1 Gauss. The energy

ordering of these transitions reverses at B ≈ 0.8 Gauss due to the nonlinear Zeeman splitting of

the sublevels under these polarisations (Figure 3.4 (a) and (b)). The complementary (σ±, σ∓)

con�gurations yield lower |⟨SQq1q2⟩|2, approximately 0.07 a.u. for |3/2,±1/2⟩ → |3/2,±1/2⟩
and about 0.03 a.u. for |3/2,±3/2⟩ → |3/2,±3/2⟩.

For mixed polarizations (π, σ±), transitions that change |M | by one unit, such as |3/2,−3/2⟩ →
|3/2,−1/2⟩ or |3/2, 1/2⟩ → |3/2, 3/2⟩, are the dominant ones but occur with |SQq1q2 |2 around
0.02 a.u. Opposite-M transitions like |3/2,−1/2⟩ → |3/2, 1/2⟩ are strongly suppressed, with

|⟨SQq1q2⟩|2 below 10−3 a.u. (Figure 3.4 (f) and (g)). Same-helicity circular polarizations (σ±,

σ±) produce small but measurable ∆M = ±2 transitions, with |⟨SQq1q2⟩|2 ≳ 0.04 a.u. (Figure

3.5 (a) and (b)).

III.3 Behavior for J̄ = 5/2

For (π, π), the strongest transitions are |5/2,±5/2⟩ → |5/2,±5/2⟩, with |⟨SQq1q2⟩|2 near 0.3 a.u.
Transitions involving lower |M | values are weaker, with |⟨SQq1q2⟩|2 ∼ 0.1 a.u. for M = ±3/2

and |⟨SQq1q2⟩|2 ∼ 0.05 for M = ±1/2 (Figure 3.4 (c) and (d)). In contrast, the (σ±, σ∓)

33



con�gurations favor transitions with lower |M |: |5/2,±1/2⟩ → |5/2,±1/2⟩ reach |⟨SQq1q2⟩|2
around 0.1 a.u., while |5/2,±3/2⟩ → |5/2,±3/2⟩ give about 0.08 a.u. The |⟨SQq1q2⟩|2 for

M = ±5/2 drop to about 0.04 a.u.

For (π, σ±), the ∆M = ±1 transitions remain modest for external transitions, typically with

|⟨SQq1q2⟩|2 ∼ 0.037 a.u., then they decrease to around 0.015 a.u. for more inner transitions and

negligible for |M | = 1/2 (Figure 3.4 (h) and (i)). Same-helicity circular polarizations (σ±, σ±)

result in small but detectable ∆M = ±2 transitions, with |⟨SQq1q2⟩|2 around 0.068 a.u. for

paths involving both M = ±1/2 and ±3/2 (Figure 3.5 (c) and (d)).

III.4 Magnetic Field dependence

The magnetic �eld modi�es both the energy levels and the structure of the eigenstates through

Zeeman splitting (as discussed in Section I.3), which in turn a�ects two-photon coupling

strengths. This in�uence is most evident in the reversal of transition energy orderings for

q = 0 and in the gradual redistribution of |⟨SQq1q2⟩|2 among di�erent M levels as the �eld

increases (Figure 3.4).
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IV Light Shifts in Two-Photon Hyper�ne Transitions

With the same Mathematica code that I developed for computing the two-photon operator

matrix elements�based on the formalism outlined in Section I.3 and Eqs. (2.16), (2.17), and

(2.22)�I analyzed the AC Stark shifts (light-induced energy shifts) associated with two-photon

transitions between hyper�ne sublevels of the H+
2 molecular ion, for magnetic �elds ranging from

0 to 1 Gauss. The transition photon wavelength is set to 9.15µm. The results are expressed

using the notation |J̄ ,MJ⟩ → |J̄ ′,M ′
J⟩ (a shorthand for |ν = 0, J̄ ,MJ⟩ → |ν = 1, J̄ ′,M ′

J⟩), with
a particular emphasis on the in�uence of di�erent laser polarization combinations and angular

momentum projections on the observed shifts.

For polarization combinations (q1, q2) = (π, π), (σ±, π), (π, σ±), the polarizability is assumed

to be dominated by the ππ channel. For simplicity, we attribute the entire laser intensity to

this channel I = 0.1W/mm2. This assumption highlights the relative behavior of the various

polarization con�gurations rather than their absolute values. In a real experimental setup, each

laser beam has its own intensity, and the total two-photon coupling depends on the product of

the corresponding �eld amplitudes. Adjusting to realistic intensity distributions would therefore

amount to a straightforward rescaling of the computed results, without altering the trends

reported here.

For mixed circular polarizations (σ±, σ∓), both permutations contribute symmetrically, and

the laser intensity is divided equally between the (σ+, σ−) and (σ−, σ+) components (I/2 for

each one). Transitions with q1 + q2 = 0 (i.e., ∆MJ = 0) induce scalar light shifts and are

therefore excluded from the di�erential light shift analysis.

IV.1 General Trends

The following �gures show the calculated spectra for di�erent polarization con�gurations. Each

set of four panels corresponds to a speci�c polarization pair, organized as follows: left column,

B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with |3/2,MJ⟩ → |3/2,M ′
J⟩,

bottom row, transitions with |5/2,MJ⟩ → |5/2,M ′
J⟩. Please note that the labels within each

panel are local and are not meant to be compared directly between panels.
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(a) (b)

(c) (d)

(e) Polarization con�guration (π, π)

(f) (g)

(h) (i)

(j) Polarization con�guration (σ+, π)

Figure 3.6: Two-photon light shifts for two polarization con�gurations. Each subpanel shows
the corresponding magnetic �eld strength and transition type. Local labels are not

comparable across panels.
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� (π, π): This con�guration allows only ∆MJ = 0 transitions. The observed light shifts are

strictly negative, re�ecting a scalar-dominated polarizability. The magnitude increases

with |MJ |, in agreement with the enhanced coupling of stretched states in tensor polar-

izability interactions.

� (σ±, σ∓): Diagonal transitions are again favored, but here the light shifts are positive.

Interestingly, the magnitude is largest for lower |MJ |, indicating that tensorial components
dominate and their angular dependence favors central Zeeman sublevels.

� (π, σ±) or (σ±, π): These mixed polarization cases allow ∆MJ = ±1 transitions and

exhibit both positive and negative light shifts. The shift direction depends on the sign

of MJ and the circular polarization's handedness, revealing asymmetries associated with

angular momentum transfer and the interference between vector and tensor components.

IV.2 Behavior for J̄ = 3/2

Under purely longitudinal light (π, π), the light shifts are negative and increase in magnitude

with |MJ |. The transition involving |MJ | = 3/2 is more strongly shifted than that involving

|MJ | = 1/2, as expected from the enhanced coupling of stretched states to intermediate levels

through electric dipole interactions (Figure 3.6 (a) and (b)). This monotonic trend is consis-

tent with scalar and tensor polarizability e�ects. For the complementary symmetrized circular

polarizations (σ+, σ−) are applied, the light shifts become positive. The trend reverses: the

|MJ | = 1/2 sublevel experiences the largest shift, while the |MJ | = 3/2 sublevel is less af-

fected. This behavior suggests the presence of a dominant tensorial interaction whose angular

momentum structure favors lower |MJ | states under circular polarizations.
For mixed polarization combinations such as (π, σ+), we observe that transitions of the

type |3/2,−3/2⟩ → |3/2,−1/2⟩ exhibit positive light shifts, whereas their counterparts at the
opposite end of the Zeeman ladder, such as |3/2, 1/2⟩ → |3/2, 3/2⟩, produce negative shifts

(Figure 3.6 (f) and (g)). A similar pattern is found for (π, σ−) polarization, with the roles of

MJ ↔ −MJ interchanged, illustrating a mirror symmetry under magnetic quantum number

inversion. The transition involving |MJ | = 1/2, namely |3/2,−1/2⟩ → |3/2, 1/2⟩, also results

in a negative shift for both cases and is the weakest among them

IV.3 Behavior for J̄ = 5/2

As in the J̄ = 3/2 case, (π, π) transitions show exclusively negative shifts that grows nonlinearly

and symmetrically in magnitude with increasing |MJ |. The strongest shift occurs for the |MJ | =
5/2 sublevel, and the smallest for |MJ | = 1/2 (Figure 3.6 (c) and (d)). The polarizability in this

con�guration contains strong scalar and tensor components that preferentially couple stretched

states more strongly. Under (σ+, σ−) polarization, the behavior is reversed: the largest positive

light shift appears for |MJ | = 1/2, while the magnitude decreases for |MJ | = 3/2 and becomes

smallest for |MJ | = 5/2. This reversal highlights how the tensor structure of the light shift

depends strongly on the polarization geometry and the angular momentum structure of the

states involved.

37



Mixed polarization cases (π, σ±) or (σ±, π) yield shifts that are both positive and negative,

depending on the speci�c transition. For instance, for σ+ transitions like |5/2, 3/2⟩ → |5/2, 5/2⟩
and |5/2, 1/2⟩ → |5/2, 3/2⟩ yield negative shifts (decreasing in magnitude in this order), while

|5/2,−3/2⟩ → |5/2,−1/2⟩ and |5/2,−5/2⟩ → |5/2,−3/2⟩ transitions yield positive shifts (in-

creasing in magnitude in this order) (Figure 3.6 (h) and (i)). A similar pattern is found for

(π, σ−) polarization, with the roles of MJ ↔ −MJ interchanged, illustrating the same mirror

symmetry under magnetic quantum number inversion. These transitions are ∆MJ = ±1 and

their sensitivity to both MJ and the polarization direction con�rm that vector components

contribute to the light shift and can interfere either constructively or destructively with scalar

and tensor parts.

IV.4 Magnetic Field Dependence

For (π, π) transitions, the light shifts remain approximately constant as the magnetic �eld is

varied from B = 0 to 1 Gauss. This robustness is expected for ∆MJ = 0 transitions where the

intermediate state structure remains largely una�ected by linear Zeeman shifts.

By contrast, transitions under (π, σ±) or (σ±, π) exhibit a mild but observable B-�eld de-

pendence. For instance, the shift for |5/2,−1/2⟩ → |5/2,−3/2⟩ slightly increases with B, while
the shift for |5/2,+3/2⟩ → |5/2,+1/2⟩ decreases. This behavior arises from the magnetic-�eld-

induced mixing of the hyper�ne sublevels, which modi�es the angular momentum composition

of the states involved. In the Wigner�Eckart formalism, this manifests as a B-dependent redis-

tribution of the transition strengths via the Clebsch�Gordan coe�cients and tensor components

of the polarizability operator, rather than from any signi�cant change in the energy denomina-

tors of the virtual states

Such behavior emphasizes the importance of carefully selecting polarization con�gurations

and �eld strengths in precision spectroscopy experiments, where di�erential light shifts can

signi�cantly a�ect measurement accuracy.
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V Raman Rabi Frequencies

Building upon the same Mathematica implementation developed for the two-photon operator

matrix elements (Section I.3), I extended the calculations to analyze two-photon Raman transi-

tions within the rovibrational ground state (ν = 0) of H+
2 according to (2.19). Here, the focus is

on the behavior of the Rabi frequencies Ω as functions of the magnetic sublevel quantum num-

bers (J̄ ,MJ), polarization combinations (q1, q2), and external magnetic �eld strengths ranging

from 0 to 1 Gauss.

In this section, I consider a representative laser frequency, where the Raman matrix elements

⟨n||SQ(k)(E)||n⟩ have been computed as a function of the photon energy (see Figure 3.3). Since
the Raman transition probability and the associated Rabi frequency depend on the detuning

from intermediate virtual states, the choice of the laser wavelength is not unique and can be

optimized.

The laser intensity is �xed at I = 0.1W/mm2, and the results for Ω presented below

are computed for λ = 1µm. The trends discussed are representative of this wavelength, al-

though quantitative values would scale with λ according to the corresponding transition ma-

trix elements. Transitions are labeled using the notation |J̄ ,MJ⟩ → |J̄ ′,M ′
J⟩, shorthand for

|ν = 0, J̄ ,MJ⟩ → |ν = 0, J̄ ′,M ′
J⟩.

V.1 General Trends

The following �gures show the calculated spectra for di�erent polarization con�gurations. Each

set of four panels corresponds to a speci�c polarization pair, organized as follows: left column,

B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with |3/2,MJ⟩ → |3/2,M ′
J⟩,

bottom row, transitions with |5/2,MJ⟩ → |5/2,M ′
J⟩. Please note that the labels within each

panel are local and are not meant to be compared directly between panels.

The overall structure follows similar trends observed in two-photon rovibrational transitions.

Each polarization combination excites transitions with characteristic angular momentum selec-

tion rules, re�ected in the distribution and magnitude of the Rabi frequencies.

� (π, σ±) or (σ±, π): These mixed polarizations allow ∆M = ±1 transitions, generally

yielding weaker Rabi frequencies. Typical values lie in the range Ω ∼ 0.46 Hz � 0.64 Hz

for outer-to-inner sublevel transitions (e.g., |J̄ ,−3/2⟩ → |J̄ ,−1/2⟩), while opposite-M

transitions (e.g., |J̄ ,−1/2⟩ → |J̄ , 1/2⟩) are strongly suppressed, with Ω ≲ 0.01 Hz.

� (σ±, σ±): These enable ∆M = ±2 transitions. Despite the higher angular momentum

transfer, Rabi frequencies remain measurable, reaching values around 0.66 Hz for J̄ = 3/2

and up to 0.85 Hz for J̄ = 5/2. The Rabi frequencies of these transitions show little or

no dependence on the magnetic �eld.
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(a) (b)

(c) (d)

(e) Polarization con�guration (σ+, π)

(f) (g)

(h) (i)

(j) Polarization con�guration (σ+, σ+)

Figure 3.7: Raman Rabi Frequencies for two polarization con�gurations. Each subpanel
shows the corresponding magnetic �eld strength and transition type. Local labels are not

comparable across panels.
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V.2 Behavior for J̄ = 3/2

In the mixed (π, σ±) con�gurations, transitions that change |M | by 1 (e.g., |3/2,−3/2⟩ →
|3/2,−1/2⟩ and |3/2, 1/2⟩ → |3/2, 3/2⟩) yield Ω ∼ 0.465 Hz. Transitions between opposite

sublevels (e.g., |3/2,−1/2⟩ → |3/2, 1/2⟩) are strongly suppressed, with Ω ≲ 0.01 Hz, although

they exhibit a small increase with B (Figure (3.7) (a) and (b)).

For (σ±, σ±), ∆M = ±2 transitions such as |3/2,−3/2⟩ → |3/2, 1/2⟩ or |3/2, 3/2⟩ →
|3/2,−1/2⟩ produce Rabi frequencies around Ω ∼ 0.66 Hz, with no noticeable �eld dependence

(Figure (3.7) (f) and (g)).

V.3 Behavior for J̄ = 5/2

In the (π, σ±) or (σ±, π) cases, transitions such as |5/2, |MJ | = 3/2⟩ ↔ |5/2, |MJ | = 5/2⟩ and
|5/2, |MJ | = 1/2⟩ ↔ |5/2, |MJ | = 3/2⟩ show Ω values 0.4 Hz and 0.66 Hz respectively. Opposite-

M transitions remain suppressed with Ω ≲ 0.01 Hz (Figure (3.7) (c) and (d)).

For (σ±, σ±), ∆M = ±2 transitions are robust across all �eld strengths, with Rabi fre-

quencies between 0.63 Hz and 0.85 Hz, depending on the speci�c pair of initial and �nal states

(Figure (3.7) (h) and (i)).

V.4 Magnetic Field Dependence

The external magnetic �eld modi�es the Rabi frequencies primarily through Zeeman-induced

mixing of the hyper�ne sublevels, which alters the angular momentum structure and polarization-

dependent couplings. For (π, π) transitions involving extremal magnetic sublevels, this mixing

slightly enhances the two-photon matrix elements, leading to a modest increase in Ω. In con-

trast, transitions involving central sublevels, especially under (σ±, σ∓) or (σ±, π), remain weakly

allowed due to symmetry constraints, but still show a small growth in Ω (up to ∼ 0.01 Hz at

B = 1 Gauss) because of the redistribution of transition strength among MJ levels. This

behavior is therefore attributed to �eld-induced mixing and interference e�ects in the tensor

components of the two-photon operator, rather than improved resonance conditions.
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VI Light Shifts in Raman Transitions

I applied again the light-shift formalism to analyze the AC Stark shifts (light-induced energy

shifts) associated with two-photon Raman transitions between hyper�ne sublevels within the

vibrational ground state (v = 0) of H+
2 , for magnetic �elds ranging from 0 to 1 Gauss. The

calculations were performed for a representative photon wavelength of λ = 9.15µm, with tran-

sitions denoted as |J̄ ,MJ⟩ → |J̄ ′,M ′
J⟩, shorthand for |0, J̄ ,MJ⟩ → |0, J̄ ′,M ′

J⟩.
For polarization combinations (q1, q2) = (π, π), (σ±, π), (π, σ±), the polarizability is dom-

inated by the ππ channel. To simplify the analysis, I assigned the entire laser intensity

I = 0.1W/mm2 to this channel. This choice is intended to highlight relative behaviors across

polarization con�gurations; in practice, each laser beam has its own intensity, and the two-

photon coupling scales with the product of their �eld amplitudes. Adjusting to realistic intensity

distributions would therefore correspond to a simple rescaling of the computed results.

For mixed circular polarizations (σ±, σ∓), both permutations contribute equally, and the

laser intensity is divided as I/2 between the (σ+, σ−) and (σ−, σ+) components. Transitions

with q1 + q2 = 0 (i.e., ∆MJ = 0) result in purely scalar light shifts and are excluded from the

present discussion, as they do not a�ect the di�erential transition frequencies.

VI.1 General Trends

The following �gures show the calculated spectra for di�erent polarization con�gurations. Each

set of four panels corresponds to a speci�c polarization pair, organized as follows: left column,

B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with |3/2,MJ⟩ → |3/2,M ′
J⟩,

bottom row, transitions with |5/2,MJ⟩ → |5/2,M ′
J⟩. Please note that the labels within each

panel are local and are not meant to be compared directly between panels.

These observations align with dipole selection rules and the expected behavior of tensor

light shifts under linear and circular polarizations.

� The polarization pairs (π, σ±) and (σ±, π) yield the dominant o�-diagonal light shifts

relevant for Raman transitions. These produce shifts symmetric about ∆|MJ | = 0, where

transitions decreasing |MJ | (e.g., 3/2 → −1/2) exhibit positive shifts, while those increas-

ing |MJ | (e.g., 1/2 → 3/2) show negative shifts.

� Other polarization con�gurations are not included, as they correspond either to scalar

shifts (no di�erential energy change) or forbidden transitions under the selection rules

relevant here.
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(a) (b)

(c) (d)

(e) Polarization con�guration (σ+, π)

(f) (g)

(h) (i)

(j) Polarization con�guration (σ−, π)

Figure 3.8: Raman light shifts for two polarization con�gurations. Each subpanel shows the
corresponding magnetic �eld strength and transition type. Local labels are not comparable

across panels.
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VI.2 Behavior for J̄ = 3/2

For the (σ+, π) polarization, the transition |3/2,−3/2⟩ → |3/2,−1/2⟩ experiences a light shift
of approximately 0.19 Hz, while |3/2,−1/2⟩ → |3/2, 1/2⟩ shows a negligible shift near zero,

and |3/2, 1/2⟩ → |3/2, 3/2⟩ experiences a shift of about −0.19 Hz (Figure 3.8 (a) and (b)).

The (σ−, π) polarization yields a symmetric behavior: |3/2, 3/2⟩ → |3/2, 1/2⟩ has a light shift

around 0.19 Hz, |3/2, 1/2⟩ → |3/2,−1/2⟩ is negligible, and |3/2,−1/2⟩ → |3/2,−3/2⟩ shows a
shift near −0.18 Hz. This near mirror symmetry con�rms the expected polarizability patterns,

with null shifts atMJ = ±1/2 corresponding to vanishing di�erential light shifts between these

sublevels (Figure 3.8 (f) and (g)).

VI.3 Behavior for J̄ = 5/2

For (σ+, π) polarization, the light shifts follow a clear trend where the extremal transitions

exhibit the largest magnitudes: |5/2, 3/2⟩ → |5/2, 5/2⟩ shows approximately −0.2Hz, while

|5/2, 1/2⟩ → |5/2, 3/2⟩ is around −0.1Hz and slightly decreases with increasing magnetic �eld.

The transition |5/2,−1/2⟩ → |5/2, 1/2⟩ remains negligible, whereas |5/2,−3/2⟩ → |5/2,−1/2⟩
exhibits a positive shift of about 0.1Hz that grows slightly with the magnetic �eld, and

|5/2,−5/2⟩ → |5/2,−3/2⟩ shows the largest positive shift around 0.2Hz (Figure 3.8 (c) and

(d)).

For (σ−, π) polarization, the pattern is reversed with respect to the sign ofMJ : |5/2,−3/2⟩ →
|5/2,−5/2⟩ has a shift near −0.2Hz, |5/2,−1/2⟩ → |5/2,−3/2⟩ is around −0.1Hz and in-

creases with �eld strength, |5/2, 1/2⟩ → |5/2,−1/2⟩ is negligible and decreases slightly with

magnetic �eld, |5/2, 3/2⟩ → |5/2, 1/2⟩ is about 0.1Hz and decreases with �eld, and |5/2, 5/2⟩ →
|5/2, 3/2⟩ is about 0.2Hz. This antisymmetry with respect to MJ → −MJ and the near-zero

shifts around MJ = ±1/2 re�ect the expected tensor light-shift structure and the minima in

the di�erential polarizability gradient (Figure 3.8 (h) and (i)).

VI.4 Magnetic Field Dependence

Overall, the computed light shifts for the Raman transitions remain extremely small, typically

in the sub-Hz range over the magnetic �eld interval of 0 to 1 Gauss. This behavior is primarily

due to the strong cancellation between the ac Stark shifts of the initial and �nal states, which

share the same electronic, vibrational, and rotational structure. For the two-photon transitions

between di�erent vibrational levels, a similar cancellation occurs because the electronic and

rotational structures are identical in both states.

The residual variations observed (less than 0.05 Hz across the range) are therefore minor and

mainly re�ect the small di�erence in polarizability between the coupled states, rather than any

substantial modi�cation of the underlying tensor components with the magnetic �eld. Although

these variations are negligible for most practical purposes, they become relevant when aiming

for sub-Hz precision.

44



Chapter 4

Conclusion

We have presented a comprehensive analysis of two-photon rovibrational spectroscopy in H+
2 ,

combining accurate calculations of dissociation energies, transition probabilities, Raman Rabi

frequencies, and Zeeman shifts under various laser polarizations and magnetic sublevels. The

computed dissociation energies,

Edis(ν = 0, L = 2) ≈ −2.6290924577 n, Edis(ν = 1, L = 2) ≈ −2.3585684489 eV,

con�rm that the states under study belong to the low-lying rovibrational levels of the 1sσg

potential. The energy di�erence ∆Edis ≈ 0.270524 eV corresponds to a two-photon transition

frequency of approximately ν2γ = ∆Edis

2h
≃ 32.7062THz, which sets the requirements for laser

frequency stabilization in high-precision spectroscopy.

A key �nding is the very small magnetic-�eld sensitivity of transitions satisfying q1+q2 = 0.

For magnetic �elds B ≲ 0.1G, the Zeeman shift remains below ∆νZ < 6Hz, corresponding to a

relative shift below 10−13 with respect to the two-photon excitation frequency (2× 32.7THz =

65.4THz). This remarkable insensitivity to magnetic perturbations is a crucial asset for preci-

sion measurements.

The calculated two-photon transition matrix elements at a test wavelength of 1.5µm,

⟨0, 2|Q(0)|1, 2⟩ = −0.547278, ⟨0, 2|Q(2)|1, 2⟩ = 0.422419,

are slightly larger than previously reported values [5], but they correctly reproduce the known

static polarizabilities, indicating that the discrepancy arises from numerical convergence rather

than physical modeling.

AC Stark shifts are found to be negligible for realistic laser intensities. For example, at

I = 0.1W/mm2, the induced frequency shifts are on the order of Hz or mHz, far below the

kHz�MHz scale of the intrinsic linewidths. Their polarization dependence (negative for (π, π),

positive for (σ±, σ∓), and asymmetric for mixed con�gurations) re�ects the interplay of scalar

and tensor polarizabilities but has no signi�cant impact on the achievable accuracy.
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In conclusion, (π, π)-polarized lasers driving two-photon rovibrational transitions of H+
2

(with photon wavelength λ ≈ 9.17µm) o�er particularly favorable conditions for high-precision

spectroscopy. These transitions combine strong excitation probabilities, extremely low Zeeman

sensitivity (sub-10 Hz at 0.1G), and minimal light shifts, making them ideally suited for fre-

quency metrology and fundamental tests with molecular ions. For Raman transitions between

hyper�ne or Zeeman sublevels within the same rovibrational level (ν = 0, L = 2), similar ad-

vantages are found, with the added �exibility of choosing the photon wavelength (e.g., near

1.5µm) to optimize laser performance and minimize systematic e�ects.
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Appendix A

Wave Functions Variational Calculation

We employ a variational approach based on the method proposed by [22], which constructs

a trial wavefunction with variational parameters and minimizes the expectation value of the

Hamiltonian to approximate the bound or resonant state energies of the system.

The total wavefunction, introduced in Eq. (2.3), ΨΠ
LM(R, r1), is expanded in a basis of

coupled spherical harmonics and radial functions. The angular dependence is described by

bipolar harmonics, while the radial part incorporates correlation functions that capture the

dynamical behavior of the three-body system.

The exponents αn, βn, and γn in the radial function expansion are complex numbers chosen

in a quasi-random manner to ensure both completeness and rapid convergence. The use of

complex exponentials is particularly advantageous for describing oscillatory structures and the

nodal patterns characteristic of resonant or molecular-like states.

A general trial wavefunction is constructed as a linear combination of atomic- and molecular-

like components. It is expressed as:

ΨMLl(R, r) =
∑

l1+l2=L

Rl1rl2 [Yl1 ⊗ Yl2 ]LM Gl1l2Ll(R, r, u),

where the radial function takes the form:

Gl1l2Ll(R, r, u) =
∑

i

[

Ci cos(niR) +Di sin(niR)
]

e−aiR−bir−giu,

with the parameters ai, bi, gi, and ni also chosen quasi-randomly. The inclusion of oscillatory

functions cos(niR) and sin(niR) enhances the �exibility of the basis in representing the nodal

structure of molecular orbitals and vibrational states.

The variational problem reduces to solving the generalized eigenvalue equation:

Ac = EBc,

where A and B are real symmetric matrices of size 2N×2N (with N being the number of basis

functions), and c is the vector of expansion coe�cients. For each chosen set of complex varia-

tional parameters, the program constructs and diagonalizes the matrix pair (A,B), extracting

the eigenvalues and normalizing the corresponding eigenvectors.
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Appendix B

Linear Paul Trap

A Paul trap con�nes charged particles using a time-dependent quadrupole potential. By apply-

ing oscillating radio-frequency (RF) electric �elds, it creates an e�ective, time-averaged poten-

tial that leads to stable con�nement. The general electrostatic potential has the quadrupolar

form:

Φ(x, y, z) = αx2 + βy2 + γz2, (B.1)

and Laplace's equation in free space imposes the condition:

α + β + γ = 0. (B.2)

This constraint, in line with Earnshaw's theorem, implies that a static electrostatic po-

tential cannot trap a charged particle in all three spatial dimensions simultaneously�at least

one direction must be decon�ning. The Paul trap overcomes this limitation by dynamically

switching the con�nement axes using an RF �eld. When averaged over one oscillation period,

this produces a net con�ning e�ect.

In other words, it is impossible for all second derivatives (curvatures) of the potential to

be simultaneously positive. The alternating RF �elds continuously rotate the con�nement

directions, such that the particle experiences overall stability over time.

I Linear Paul Trap

In practice, a common implementation of this principle is the linear Paul trap, which employs

a 2D quadrupole potential:

Φ(x, y, t) =
V (t)

2r20
(x2 − y2), (B.3)

where V (t) = U − V cos(Ωt) includes both a static (DC) component U and an RF component

V cos(Ωt). This potential does not vary along the z-axis, which remains uncon�ned.

The force is obtained via F = −q∇Φ, leading to the equations of motion [4]:

mẍ =
q

r20
[U − V cos(Ωt)]x, mÿ = − q

r20
[U − V cos(Ωt)]y, z̈ = 0.
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Introducing the dimensionless parameters:

τ =
Ωt

2
, a =

4qU

mr20Ω
2
, q =

2qV

mr20Ω
2
,

we obtain the Mathieu equations:

d2x

dτ 2
+ [a− 2q cos(2τ)]x = 0,

d2y

dτ 2
+ [−a+ 2q cos(2τ)]y = 0.

The solutions are stable only within speci�c regions of the (a, q) stability diagram.

Figure B.1: Stability diagram of the Mathieu equation for a linear RF trap [4]. Left:
overlapping regions de�ne stable solutions. Right: the �rst stable region.

I.1 Adiabatic Approximation and Micromotion

When a ≪ 1 and q2 ≪ 1, the ion motion can be separated into r(t) = R(t) + ξ(t), where

R(t) describes the slow secular motion, and ξ(t) is the fast micromotion at frequency Ω [23].

The total electric �eld is E(t) = E0 +EΩ(t), where E0 is a static component, and EΩ(t) is the

RF �eld driving the micromotion. Averaging over one RF cycle leads to the ponderomotive

potential:

Φe�(r) =
q2

4mΩ2
|EΩ(r)|2, (B.4)

with an associated averaged force ⟨FRF⟩ = − q2

4mΩ2∇|EΩ|2. The resulting secular motion is

harmonic, with e�ective frequencies:

ω2
x,y =

Ω2

4

(

a± q2

2

)

. (B.5)

I.2 Endcap Potential and Axial Con�nement

To con�ne ions along z, additional static potentials are applied to endcap electrodes :

Φendcap(x, y, z) =
U1

2z2e�

(

z2 − x2 + y2

2

)

, (B.6)

resulting in axial harmonic motion:

z̈ + ω2
zz = 0, ω2

z =
2qU1

mz2e�
. (B.7)
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Appendix C

Supplementary Results: Complete Data

Sets for Two-Photon and Raman

Calculations

For completeness, this appendix compiles the full set of numerical results generated from the

calculations of the Two Photon operator described in Chapters 2 and 3. Although these com-

plete results are not analyzed in detail in the main text, they follow the same selection rule

patterns and general trends discussed in Chapter 3. They are provided here as a reference and

for potential future analysis of speci�c transitions of experimental interest.

Figure C.1: Comprehensive results for two-photon transition probabilities for all polarization
con�gurations (q1, q2) and magnetic �elds B = 0 and 1G. Local labels within each panel are

not directly comparable across di�erent sub�gures.
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Figure C.2: Comprehensive results for two-photon transition probabilities for all polarization
con�gurations (q1, q2) and magnetic �elds B = 0 and 1G. Local labels within each panel are

not directly comparable across di�erent sub�gures.
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Figure C.3: Comprehensive results for two-photon light shifts for all polarization
con�gurations (q1, q2) and magnetic �elds B = 0 and 1G. Local labels within each panel are

not directly comparable across di�erent sub�gures.
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Figure C.4: Comprehensive results for Raman Rabi Frequencies for all polarization
con�gurations (q1, q2) and magnetic �elds B = 0 and 1G. Local labels within each panel are

not directly comparable across di�erent sub�gures.

Figure C.5: Comprehensive results for Raman light shifts for all polarization con�gurations
(q1, q2) and magnetic �elds B = 0 and 1G. Local labels within each panel are not directly

comparable across di�erent sub�gures.
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