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Abstract

This internship report outlines work performed within the Trapped lons team at Laboratoire
Kastler Brossel (LKB), a leading research institution focusing on high-precision measurements
to test fundamental physical theories. The team’s primary experimental goal is to precisely
determine the proton-to-electron mass ratio (u) through the measurement of a specific two-
photon transition in the HJ ion, aiming for an unprecedented experimental uncertainty of
1 x 107!2, The present work of this internship was focused on exploring the fundamental
properties of Hf through numerical simulations for future measurements in this molecule.

This internship was conducted under the supervision of Laurent Hilico, with the valuable
assistance of doctoral researcher Maxime Leuliet and the support of researcher Jean-Philippe
Karr.



Chapter 1

Introduction

I Context and Motivation

I.1 The Trapped Ions Team at Laboratoire Kastler Brossel

The Laboratoire Kastler Brossel (LKB) is a joint research unit affiliated with the Ecole Normale
Supérieure, Sorbonne University, the Collége de France, and the National Centre for Scientific
Research (CNRS). Within LKB, the Trapped Ions team leverages the unique properties of cold,
trapped ions to conduct high-precision measurements. Their research aims to rigorously test
physical theories and enhance our understanding of fundamental physical constants. This team

uniquely combines both theoretical and experimental approaches to study the HJ ion.

I.2 Precision Tests of Fundamental Physics

Numerous high-precision experiments are currently underway to test the Standard Model of
physics. These efforts have two primary objectives: first, to refine the values of fundamen-
tal constants, as maintained by CODATA |[8]; and second, to search for physics beyond the
Standard Model.

Among the simplest and most precisely calculable molecular systems are the hydrogen
molecular ions Hy and HD*. Each of these ions consists of only two nuclei and a single electron.
The transition frequencies within these systems are directly sensitive to the proton-to-electron
mass ratio, y = m,/m., since Hydrogen molecular iopns are calculable quantum systems. This
sensitivity allows for extremely precise determinations of this crucial fundamental constant.
Recent measurements on HDT have already improved the accuracy of p to 2 x 107! 9], with

further improvements expected using Hy [10, 11, 12].
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Figure 1.1: Historical improvement in the measurement accuracy of the proton-to-electron
mass ratio (m,/m.) over time, as reflected in CODATA [1] adjustments and various
experimental results. The left panel shows the overall trend from 1970 to 2025, with a
significant decrease in inaccuracy. The zoomed-in right panel highlights recent advancements
(2012-2025), differentiating between results from Penning trap measurements and HD™

spectroscopy.

II Overview of the Experiment
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Figure 1.2: Scheme of the Sl-referenced lasers in the Hy experiment at LKB and its purpose.



The experiment conducted at LKB aims to measure with high precision the two-photon tran-
sition frequency between the ro-vibrational levels 1so,|v = 0,L = 2) — |v = 1,L = 2) of
the HJ molecular ion. To suppress first-order Doppler shifts, a major limitation in precision
spectroscopy, the transition is driven using two counter-propagating photons, which effectively
cancel the Doppler effect in the laboratory frame.

The HJ ions are prepared in a well-defined quantum state using Resonance Enhanced Multi-
Photon Ionization (REMPI), a 3+1 photon ionization process at 303 nm. This method selec-
tively ionizes neutral Hy molecules into the desired |v = 0, L = 2) ro-vibrational level of the ion.
The resulting Hy ions are then trapped in a linear radiofrequency trap that ensures confinement
and isolation from environmental perturbations.

Due to the homonuclear and symmetric nature of HJ , one-photon electric dipole transitions
are strongly suppressed, making two-photon transitions the dominant excitation mechanism.
Despite their low transition probabilities, the high spectral resolution enabled by Doppler-free
two-photon spectroscopy makes this approach ideal for probing such forbidden transitions with
exceptional accuracy.

At the target precision level of 107!2, the second-order Doppler shift becomes a significant

consideration. This relativistic effect is given by:

Av 2 %m’u

For HJ ions with a typical kinetic energy of approximately 1 eV and a rest mass energy of about
2 GeV, this corresponds to a relative shift of roughly 5x 1071°. To mitigate this uncertainty, the
ions must be cooled to very low temperatures. Unfortunately, laser cooling is not feasible for
Hj due to its forbidden dipole transitions. Instead, sympathetic cooling is employed: another
ionic species, specifically Be™, is laser-cooled in the same trap, and HJ is subsequently cooled
via Coulomb interaction with the cold Be™ ions. Beryllium ions are ideal for this purpose due
to their light mass and a convenient cooling transition at 313 nm.

The spectroscopy laser used for this experiment is a 9.17 um quantum cascade laser (QCL),
precisely locked to a CO4 laser. Given the weak nature of the two-photon transition, a Fabry-
Perot cavity placed in vacuum is used to enhance the beam intensity and maximize the inter-
action strength with the trapped ions. To ensure optimal alignment between the ions and the
fixed-mode spectroscopy beam, the ion trap is mounted on a translation stage, and its position
has been optimized.

Detection of the excited ions is carried out via Resonance Enhanced Multi-Photon Dissocia-
tion (REMPD). After excitation to the v = 1, L = 2) state, a 213 nm laser is used to dissociate
the molecule. The dissociation cross-section at 213 nm is 72 times higher for the v = 1 state
than for the v = 0 state. This significant difference enables highly state-selective detection
by monitoring the loss of ions from the trap. The loss rate is much higher if the H ions are
promoted to the v = 1 level by the spectroscopy laser.

Utilizing a narrow-linewidth 9.17 pm laser (~100 Hz), we aim for an unprecedented exper-
imental uncertainty of 1 x 1072, Current theoretical predictions for this transition achieve an
accuracy of 7.6 x 10712 [13].



This high-precision measurement of the |v =0,L =2) — |v =1, L = 2) transition in Hj
will provide a direct optical determination of the proton-to-electron mass ratio, u, thereby

contributing significantly to tests of fundamental physics at the highest level of precision.

II.1 Femtosecond Lasers and Optical Frequency Combs

Femtosecond lasers emit pulses of light with durations on the order of 107! seconds. These
ultrashort pulses are generated via mode-locking, a technique that forces multiple longitudinal
modes of the laser cavity to oscillate with fixed phase relationships.

Mode-locking can be achieved either actively, by modulating cavity losses at the round-trip
frequency using an external signal (e.g., RF-driven electro-optic modulators), or passively, by
incorporating a saturable absorber that favors high-intensity pulse formation. Passive mode-
locking is especially effective with broadband gain media, enabling the simultaneous excitation
of many cavity modes. The coherent superposition of these modes leads to the formation of a
stable train of ultrashort pulses, with pulse duration 7, and repetition period

Tp = =,

Vg

where L is the cavity length and v, is the group velocity of the pulse envelope.
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Figure 1.3: (a) Time-domain pulse train showing carrier-envelope phase slips; (b)
Corresponding frequency-domain comb structure with evenly spaced modes separated by frep,
offset by the carrier-envelope offset fy [2].

In the frequency domain, this mode-locked pulse train corresponds to a comb of narrow



spectral lines with frequencies given by:

Vp = nfrep + f07

where fiep is the repetition rate of the pulses, n is an integer mode index, and fj is the carrier-
envelope offset (CEQ), arising from dispersion-induced phase slips between the pulse envelope

and carrier wave. The CEQ is related to the per-round-trip phase slip A¢ by:

Ag

fo= e

The resulting structure, an Optical Frequency Comb (OFC), is an evenly spaced set of
optical frequencies spanning hundreds of terahertz. When both f.., and fy are stabilized, this
comb acts as a precise optical ruler that can connect optical and microwave frequencies with
high accuracy

I1.1.1 Beat Note Detection and Laser Locking

To stabilize laser frequencies in the experiment, fiber lasers at 1550 nm and 1051 nm are phase-
locked to specific modes of the optical frequency comb. Beat notes are generated by mixing
each laser with the nearest comb mode on a fast photodetector. The resulting radio-frequency
signal — the beat frequency — corresponds to the difference between the laser and the comb
mode.

The beat note is first amplified using a ZFL amplifier and then passed through a frequency
divider with division factor 8, which reduces it to a lower intermediate frequency suitable
for digital processing. This signal is compared to a reference frequency f.s using a Phase-
Frequency Comparator (PFC), which generates an error signal. This error signal is processed
by a Proportional-Integral (PI) controller that adjusts the laser’s injection current or cavity
length, keeping it locked to the comb.

Each laser is stabilized in a similar manner, with a tunable offset introduced to control the
frequency separation between the two lasers. The same architecture is applied to the 1051 nm

system, allowing for precise referencing to the optical comb.

I1.2 Frequency Conversion Chain

Once stabilized, the 1051 nm laser undergoes a series of nonlinear optical processes to generate
coherent ultraviolet light at 313 nm. After spectral filtering to eliminate amplified spontaneous
emission, the beam is amplified to the power levels required for nonlinear conversion.

The first nonlinear stage is sum-frequency generation (SFG), where the 1051 nm beam and

a second 1550 nm beam are mixed in a nonlinear crystal to produce 626 nm light:

1 1 1

)\626 )\1051 /\1550




The 626 nm output is then frequency-doubled via second-harmonic generation (SHG), yield-
ing ultraviolet light at 313 nm:
1 1
9.
A313 A626
This narrowband UV light is used for spectroscopy and manipulation of beryllium ions
(Be™), as it is resonant with their transitions. Because the original lasers are locked to the

frequency comb, the UV output inherits the comb’s frequency stability and traceability.

I1.3 Experimental Setup Overview

The experiment involves high-resolution spectroscopy of state-selected HJ ions confined in a
linear RF Paul trap and sympathetically cooled via co-trapped Be™ ions. The setup comprises
five main components: the frequency comb, a laser frequency stabilization system, the ion trap,

the state preparation system, and the laser system for spectroscopy and detection.

e Optical Frequency Comb: The frequency comb is a 1550 nm f..,-free comb, optically
locked to a 1542 nm reference signal disseminated by the REFIMEVE fiber network [14].
The comb extends spectrally to 1900 nm and provides SI-traceable frequencies of the form
fq = Qfrep With frep, = 200 MHz.

e CO; Laser Stabilization via Sum-Frequency Generation

The frequency of a 9.17 um CO, laser is stabilized using SFG with a 1.895 pm comb
mode in an AgGaSe, crystal, producing 1.560 ym output. The powers involved are 18
mW (1.895 pm), 80 mW (CO,), and the resulting SFG power is ~600 nW, with an
efficiency of 0.7 mW/W? [15].

The beat note with the comb provides an error signal:

fbeat = fCOg - (Q2 - C]1)frep>

where ¢; and g, are integer mode numbers representing specific spectral lines (or modes) of
the optical frequency comb. The term (g2 —¢1) frep thus represents the frequency difference
between two chosen comb modes. Here, (g2 — ¢1) = 163541. This signal is divided by
8, compared with a reference frequency via a Phase-Frequency Comparator (PFC), and

used to correct the COy laser frequency through a Proportional-Integral (PI) controller.
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Figure 1.4: COq laser frequency comb scheme [3].

e Laser Frequency Stabilization

The laser system is referenced to the SI second using a stabilized frequency comb (Toptica
DFC 200 at 1.565 ym) and the REFIMEVE ultra stable 1.542 pm source [14]|. These sig-
nals are combined via Dense Wavelength Division Multiplexing (DWDM), a 25% coupler
(CP), and an Optical Circulator (OC). A photodiode detects the beat note at 89.5 MHz,
which is filtered, monitored, and analyzed using a spectrum analyzer. The frequency
instability of the optical lock is below 2 x 10713 at 1 s.
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Figure 1.5: Optical lock to REFIMEVE ultrastable signal scheme [3]



e Ion Trap and Cooling: The RF Paul trap has a characteristic radius Ry = 3.5 mm
and operates at a drive frequency of 13 MHz with an RF voltage up to 500 V, resulting
in a trap depth of approximately 1 eV. A 313 nm laser is used to Doppler-cool the Be™
ions. The Hj ions are cooled sympathetically through Coulomb interaction, forming a
mixed-species crystal approximately 1.2 mm long along the z-axis. A theoretical overview
of the Paul trap operation is provided in Appendix B

r[mm]
0

=20 -15 -1p -5

Figure 1.6: Linear Paul trap with its eight electrodes and the corresponding electric
connections. [4]

Figure 1.7: Fluorescence images of typical Be™ - HJ ion crystals produced in the Trapped Ton
group at LKB. The blue color indicates fluorescence from laser-cooled Be™ ions, while the
encircled dark spots on the left image and the dark stripe at the center of the right image

indicate non-fluorescing HJ ions.



e State Preparation via REMPI
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Figure 1.8: The arrows show the vibrational ground state preparation of HJ using a 3+1

REMPI scheme at 303 nm @, and after that the 241 REMPD spectroscopy @—i—@ The
inset shows the two-photon transition at 9.17 pm between two ro-vibrational levels [4, 3.

Although radiative decay in Hj is highly suppressed due to its homonuclear structure,
direct ionization methods such as electron impact would typically populate a broad distri-
bution of rovibrational states. To ensure state-selective preparation, we instead employ
a 3+1 Resonance-Enhanced Multi-Photon Ionization (REMPI) scheme at 303 nm (see
Figure 1.8).

Neutral Hy molecules in the ground state X'X1 (v = 0, L = 2) absorb three photons at 303
nm, reaching resonantly the excited state C'II,(v = 0, L’), followed by a fourth photon
that ionizes the molecule (Fig. 1.8 step @), yielding Hy (v = 0, L = 2) with an estimated
selectivity of 90%.

e Laser Parameters and Spectroscopy

The 303 nm radiation used for REMPT is generated via second-harmonic generation from
a pulsed dye laser. The laser operates at 20 Hz, with a pulse energy of 3-4 mJ, a pulse
duration of 10 ns, and a beam waist of wg ~ 10 um, resulting in peak intensities of

approximately 2.5 GW/ mm”.

The narrow two-photon transition at 9.17 um (step @ in Fig. 1.8) is probed using
Doppler-free spectroscopy. The mid-infrared laser beam is coupled into a high-finesse



IT1

Fabry—Pérot cavity installed under vacuum around the ion trap, which cancels the first-

order Doppler shift.

The optical cavity provides a power build-up factor of about 160, with an input power
of 20 mW leading to an intracavity power of roughly 3.2 W. With a beam waist of
wo A~ 300 um at the ion location, this corresponds to an effective intensity of / ~ 25 ~
0

2.3 x 107 V\//m2 ~ 23 W/mmz, which is the optical power effectively interacting with the

ions.

State-Selective Photodissociation

State detection is performed via photodissociation using a 213 nm pulsed laser (fifth
harmonic of a YVOy, source) operating at 10 kHz with 170 mW output power. This UV
light promotes the molecule to a dissociative electronic state (Fig. 1.8 step @), allowing

detection of specific rovibrational states.

Objective

The objective of this internship was to support the experimental efforts of the Trapped Ions

team at Laboratoire Kastler Brossel by developing a theoretical and numerical framework to

simulate two-photon spectroscopy in the HJ ion. The work focused on computing transition

amplitudes for rovibrational two-photon processes, evaluating Rabi frequencies for Raman-type

intra-rovibrational transitions, and quantifying AC Stark shifts through dynamic polarizability

calculations. These simulations provide key insights into light-matter interaction regimes rel-

evant for high-precision measurements and help optimize experimental parameters for future

determinations of the proton-to-electron mass ratio.

10



Chapter 2

Theory

I Schrédinger Functions of H

Understanding the wave functions of Hj is essential for its precise spectroscopic study. The

relevant notations for describing its states are:
e S, = 1/2: the electron spin.

e [; =1/2 and I, = 1/2: the spins of the two protons.

I = I, + I,: the total nuclear spin.

L,: the orbital angular momentum of the electron.

Ly and Ls: the orbital angular momentum of the two protons.

L: the total orbital angular momentum.

It is crucial to note that due to the Pauli symmetrization principle, and considering that the
electron occupies the ground 1so, state, the total nuclear spin [ is related to the orbital angular
momentum L. Specifically, I = 0 when L is even, and [ = 1 when L is odd. This spin-symmetry

constraint significantly influences the allowed transitions and spectroscopic properties of Hj .

I.1 Radial Wave Functions

The hydrogen molecular ion, H,, is a three-body system governed primarily by Coulomb
interactions. In the laboratory frame, such a system can be described by the non-relativistic

Hamiltonian:
3

B | 44,
H——ZQ—miVRi—k > &R (2.1)

i=1 1<i<j<3
where m;, ¢;, and R; denote the mass, charge, and position of the ¢-th particle, respectively.

We assume that particles 1 and 2 are identical nuclei (each with charge Ze and mass M),

and particle 3 is the electron with mass m, and charge —e.

11



To solve the Schrodinger equation for this system, Hylleraas 16| introduced three interpar-
ticle distances as independent variables: rq, ry, and r19, which characterize the shape and size
of the triangle formed by the three particles.

Since the total momentum P = p; 4+ ps + p3 is conserved, we can separate out the center-

of-mass motion. Defining the center-of-mass coordinate as

3
1
E miRi7
m; <
=1

and introducing internal coordinates r; = R; — X, the kinetic energy in the center-of-mass

frame becomes:

where p; are the appropriate reduced masses.
Switching to atomic units via the substitutions r = ao7, p = J—i’)ﬁ, with the Bohr radius
defined by

4F€0h2
o = ———5»
mee
the dimensionless Hamiltonian becomes:
A 1 1 1 1 1
H= —(v2+v2)+—v1 v2+—(——~——~—). (2.2)
2u Me Me \T12 T T2

The total angular momentum operator is given by:
L= —ir; X Vrl —1iry X VrQ.

To solve the eigenvalue problem associated with the Hamiltonian H , a variational ap-
proach is employed by seeking simultaneous eigenstates of a set of commuting operators:
{H,L2 L. 11}, where L? and L, are the total orbital angular momentum and its projection
along the quantization axis, respectively, and I1 is the parity operator. For systems with well-
defined orbital angular momentum quantum number L, the eigenvalues of II are given by (—1)f,
reflecting the symmetry of the wavefunction under spatial inversion.

Following the methodology presented in [17], the time-independent Schrédinger equation is
reformulated into a linear system of coupled differential equations. These equations are then
solved numerically to obtain the energy eigenvalues and corresponding eigenfunctions. In the
chosen coordinate system, the total wavefunction W, (R,r;) can be expanded in a basis of

coupled spherical harmonics and radial functions as

\I’ R I'1 Zyllb r l1l2(R 7”1,7’2) (23)

l1,l2

where Y!'2(R, #,) are the bipolar harmonics that account for the angular dependencies, and

the functions G/} (R, 71, 72) describe the radial and interparticle correlations in the system.

12



The radial functions are expanded as

NE

GlLlll-; (R7 1, 7”2) = [CnRe (e_a"R_B””_%”"?) + D,,Im (e_anR_Bn7'1_7n7'2):| '

n=1

This choice of basis ensures the correct angular momentum and parity properties, allowing for
an efficient and accurate variational treatment of the three-body problem.

By convention, the total energy of a quantum system is measured relative to the dissociation
threshold, defined as the limit in which all particles are infinitely separated and at rest. In
this limit, the potential energy vanishes and the kinetic energy is zero (see Equation (2.1)),
corresponding to a total energy of zero. This choice of energy origin allows bound-state energies

to be interpreted directly as negative quantities, with deeper negative values indicating stronger

binding.
In atomic units (a.u.), the unit of energy (known as the Hartree) is defined by setting the
fundamental constants A = m, = e = 1, which leads to the expression £y, = m.c?a? = mh—iz

The Rydberg unit of energy is defined as exactly half a Hartree 1 Ry = %Eh ~ 13.60569312 eV
according to CODATA?22 [18]. Therefore, any energy expressed in atomic units can be converted
to electronvolts using the relation E [eV] = E [a.u.] X 2Ry.

In practical few-body calculations, such as for the Hy ion, the Hamiltonian is rescaled using
dimensionless units based on a reduced mass normalization. The code handed for this task,
developed by V.I.Korobov and discused later in Appendix A, defines a scaling factor S = %’j),
where min(m;) is the smallest mass in the system (typically the electron mass m.). This ensures
that the smallest particle has unit mass and all other masses are rescaled accordingly. The
corresponding energy scaling factor is then defined as Es = 2Ry - S. This factor allows for
conversion of dimensionless eigenvalues € obtained from the rescaled Hamiltonian into physical
energy units.

Within the Born—Oppenheimer approximation, the asymptotic value of the potential energy
curve for the 1so, electronic ground state corresponds to the ionization energy of the hydrogen
atom. Thus, the dissociation energy of a given rovibrational state is measured with respect to
this asymptote, not from the zero-energy continuum. To approximate this asymptotic reference

energy, the code computes an analytic estimate:

21Z3 2 mims
n

Eref - _Ry : ( m +m3a

where Z; and Z3 are the charges, and my, mg are the masses of the two interacting particles (the
proton and electron). The principal quantum number n reflects the energy level of the hydrogen-
like system; for the ground state, n = 1. This formula gives a reasonable approximation for the
asymptotic energy of the molecular potential curve in atomic units. For the case of HJ, the
result is approximately o ~ —0.49972783971 a.u.
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The total physical energy of a bound state is then recovered from the rescaled eigenvalue
€ via E/ [eV] = €+ Eg — Fye. Using this variational approach, we find the following results for

eigenvalues and dissociation energies of two rovibrational states:

o For (v =0,L =2): e = —0.59634520549099816537, Eqis = —2.6290924577 eV

e For (v =1,L =2): e = —0.58640363153225673566, Fqis = —2.3585684489 eV
Subtracting the reference energy, these correspond to dissociation energies of approximately

Eus(v =0, L = 2) ~ —0.0966173658 a.u.
Eais(v = 1, L = 2) &~ —0.0866757918 a.u.

below the asymptotic limit. These values, equivalent to roughly —2.6 eV and —2.3 €V, lie near
the bottom of the 1so, potential well. This confirms that the computed states correspond
to low-lying rovibrational levels of Hj. For comparison, I also computed the lowest energy
bound state in this potential has a dissociation energy of approximately —2.65069 eV. The
close agreement demonstrates that the numerical method accurately reproduces the strong
binding characteristic of the ground vibrational manifold.

The dissociation energy difference between the v = 0 and v = 1 levels is AFy;s = 0.270524 eV.
To resolve this energy spacing via two-photon spectroscopy, the required frequency resolution

must be on the order of

AEgs _ 6.54124
on 2

x 10" Hz = 3.27062 x 10" Hz = 32.7062 THz. (2.4)

This sets a target linewidth for the two-photon transition, and highlights the precision needed

in the laser frequency stabilization for accurate rovibrational spectroscopy.

I.2 Magnetic and Hyperfine Interactions

Although relativistic effects in this light, three-body system are quantitatively small, their
inclusion is essential for achieving the ultra-high precision required in modern spectroscopic ex-
periments. A widely adopted approach for incorporating relativistic corrections in such systems
is to begin with the non-relativistic Hamiltonian H™®, which accurately captures the dominant
dynamics, and systematically add perturbative corrections arising from relativistic effects.
These corrections are typically divided into spin-independent and spin-dependent contribu-
tions. The spin-independent terms, denoted by V42¢ primarily account for relativistic kine-
matic corrections and modifications to the Coulomb interaction. The spin-dependent terms
include both the internal spin interactions, V**'", and the interaction with an external mag-

netic field, V™28, The full Hamiltonian can therefore be written as

H = HNR + Vdiag 4 Vspin 4 |/ mag
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Figure 2.1: Order-of-magnitude diagram of the energy scales relevant in this work. The
hyperfine structure lies far below the rovibrational splittings and requires high-precision

modeling to resolve.

The leading-order relativistic corrections are given by the Breit-Pauli Hamiltonian, which

contributes at order o relative to the non-relativistic energy. We focus on VPt 4 /mag_ The

spin structure of the rovibrational state (v, L), where v and L are the vibrational and total

orbital momentum quantum numbers, is computed in first-order perturbation theory using

an effective Hamiltonian Hyg, obtained by averaging VSPI' 4+ V™38 gver the spatial degrees of

freedom [6].

For high-precision comparisons, the relevant frequency intervals span a broad range. In this

system, transitions correspond to intervals on the order of 65 x 102 Hz, or approximately 33

Hz in two-photon transitions. These values translate to energies in electron-volts via £ = hv,

and corresponding wavelengths can be calculated using A = .

2L — 1)(2L + 3)

(2L — 1)(2L + 3)

ths = bF(I . Se) + Ce(L . Se) + C](L . I)

2

SLAIS.) — [(L-D(L-S,) + (L-S,)(L- I)]) (2.5)

1 272 1 2
L1 —E(L-I)—(L-I)>.

Neglecting relativistic and radiative corrections, the interaction of the HJ ion with an ex-

ternal magnetic field can be described, to linear order in the field strength, by the Zeeman

Hamiltonian:

Hz = geftSe - B — gppipl - B + ppLe - B — p1,(Ly + Ly) - B. (2.6)
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The total effective Hamiltonian to be diagonalized is thus composed of the hyperfine struc-

ture Hamiltonian and the Zeeman interaction:
H = Hy + Hy. (2.7)

If I # 0, the strongest coupling is the spin-spin electron- proton interaction, i.e., the first term
in Eq. (2.9). This interaction determines the principal splitting of the rovibrational levels of
H,™. With this consideration in mind, the preferable coupling scheme of angular momentum

operators is
F=S.+1, J=L+F. (2.8)

If the nuclear spin vanishes (I = 0). the orbital angular momentum quantum number

L is even, and within this coupling scheme the hyperfine Hamiltonian (2.5) simplifies to the
spin-orbit coupling form

Hygs = L+ S, = % (32 -1 -82). (2.9)

For (I =0, L = 2), there are 2L + 1 = 5 magnetic sublevels of orbital angular momentum,
each of which is coupled to a two-level spin-1/2 system, giving 5 x 2 = 10 total states. We work
in the coupled basis |v, L, S, J, M ;), where v is the vibrational quantum number. number. For
each value of J, M; spans from —J to +J in integer steps.

The basis set used in the following calculations is ordered by increasing total angular mo-
mentum J, and, for each fixed J, by increasing magnetic quantum number Mj, as illustrated

below:

{jv,L,S.=1/2,J =3/2,M; =—3/2), |v,L,S. =1/2,J =3/2, M; = —1/2),
v, L,S. =1/2,J =3/2,M; =1/2),|v,L,S. = 1/2,.J = 3/2, M, = 3/2) ,
lv,L,S. =1/2,J =5/2, My =—5/2) ,|v,L,S. = 1/2,J =5/2, M; = —3/2),
lv,L,S. =1/2,J =5/2, My =—1/2) |v,L,S. = 1/2,J =5/2, My =1/2),
v, L,S. =1/2,J =5/2,M; =3/2), |v,L,S. =1/2,J =5/2,M; =5/2)} .
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.3 Zeeman Splitting

L v J=L-1/2 J=L+1/2 (L|L|w,L)/V2L +1 (v, L|L|v,L)/v2L +1  guox

0 -63.2438 42.1625 1.069 x 10~ 1.22469 0.9198

2
1 -59.3574 39.5716 1.193 x 104 1.22469 0.9105

Table 2.1: Hyperfine splittings (in MHz) and reduced matrix elements of L. and L; (divided
by V2L + 1) for the rovibrational levels (v, L) with L =2 and v = 0,1 of Hy. The values of
(Lot )) are not explicitly listed, but the last column shows the corresponding rotational g
factors. Data from [6, 7|.

The Hamiltonian H in equation (2.7) is diagonalized using a Mathematica program I developed,
following the method described in [19]. Employing the hyperfine coefficients listed in Table 2.1,
the full Hamiltonian matrix is constructed by combining contributions from the spin—orbit,
rotational, and hyperfine operators: S., L, and Hyg. Diagonalizing this matrix yields both
the energy eigenvalues and corresponding eigenstates. All energies are converted to frequency
units via E/h, ensuring direct comparability with spectroscopic measurements. The resulting
eigenstates are superpositions of basis states sharing the same magnetic quantum number M
but differing in total angular momentum J. In particular, the two states with M; = +5/2

remain unmixed, while the remaining eight states appear as linear combinations of the form:
‘I/,L,SG,I,F, J_,MJ> == 05/2 ‘I/,L,Se7J == 5/2,M]> —+ 03/2 ‘I/,L,SG,J = 3/2,M]>

To label these mixed states, we define J as the J value corresponding to the largest coefficient
in magnitude, and M; remains as a good quantum number. This is because with B = B/%,
rotational symmetry is broken except around the z-axis, so J, commutes with the Hamiltonian

and M ; remains conserved.
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Figure 2.2: Energy levels of the hyperfine states for both rovibrational levels as a function of
the applied magnetic field B in the range 0-200 Gauss.
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Figure 2.3: Energy levels of the hyperfine states for both rovibrational levels as a function of
the applied magnetic field B in the range 0-2 Gauss.
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In the range 0-200 Gauss (Figure 2.2), the energy levels exhibit significant curvature as
the magnetic field increases. This behavior arises because the electronic Zeeman interaction
becomes the dominant term in the Hamiltonian, leading to the progressive decoupling of the
orbital angular momentum L and the electron spin S.. As a consequence, J is no longer a good
quantum number, and the eigenstates become admixtures of the original J = 3/2 and 5/2 basis
states. In the high-field limit, the levels regroup according to the spin projection S, = +1/2,
and their energies are primarily determined by the electronic Zeeman effect.

The states with J = 5/2, M = 45/2 retain a pure character (mixing coefficient 100%)
across the entire field range because they correspond to a unique combination of L and S..
Their energies therefore vary linearly with B, even at high fields. For the other states, the
mixing coefficients approach 50% as the field increases, reflecting the transition to the high-
field regime where the eigenstates become nearly equal mixtures of the low-field J = 3/2 and
5/2 states.

At low magnetic fields (Figure 2.3), the hyperfine interaction dominates, and the eigenstates
remain close to pure J states. The Zeeman effect introduces small linear shifts proportional to
B, and the energy splittings are primarily determined by the coupling between L and S.. The
mixing coefficients remain near 100%, indicating that the states largely preserve this low-field

character.

II Two-Photon Spectroscopy

Two-photon spectroscopy is a powerful tool for high-precision measurements, particularly in
systems like Hf where electric dipole transitions are forbidden between certain states due to
selection rules. In such cases, transitions proceed via the simultaneous absorption of two pho-
tons, described within second-order perturbation theory. A convenient framework for analyzing
these transitions is provided by the dressed atom formalism [20|, which naturally incorporates
essential features such as dynamic Stark shifts. In this formalism, the interaction between the
atom and the light field is treated in a way that highlights how these shifts and the two-photon
coupling arise from the applied fields.

II.1 Two Photon Operator

The irreducible tensor operator formalism provides a powerful framework for analyzing two-
photon transitions between two states |g) and |e), as it enables a straightforward identification
of selection rules and simplifies the calculation of transition amplitudes. To describe such
transitions in Hj under arbitrary polarization configurations, we begin by introducing the

effective two-photon transition operator:

1

Qelezzd'elH_E

d- e, (2.10)

where d is the electric dipole operator, H is the full atomic Hamiltonian, and E represents

the energy of the intermediate virtual states. These virtual states are not real, observable
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eigenstates of the system, but rather off-resonant intermediate levels that mediate the two-
photon transition via second-order perturbation theory (see Figures 2.4, 2.5, 2.6 for a schematic
representation of the role of virtual states).

The irreducible tensor operator formalism provides a powerful framework for analyzing two-
photon transitions between two states |g) and |e), as it enables a straightforward identification
of selection rules and simplifies the calculation of transition amplitudes. To describe such
transitions in Hj under arbitrary polarization configurations, we begin by introducing the

effective two-photon transition operator:

1
H-F

Qqu = d * €1 d + €9, (211)

where d is the electric dipole operator, H is the full atomic Hamiltonian, and E represents the
energy of the intermediate virtual states. The polarization vectors €; and €5 describe the two
excitation field polarizations interacting with the ion.

To account for the indistinguishability of the absorption order, the physical observable

involves the symmetrized operator:

SQ6162 = % <Q€162 + Q6261) : (2'12)

It is convenient to express both the dipole operator and the polarization vectors in the spher-
ical basis. The components of the dipole operator are then written as d,, where ¢ = —1,0,+1
corresponds to circularly polarized (o0~ 7, o) transitions. Accordingly, the polarization vectors

€1, €5 are replaced by their spherical components ¢;, g2, and the operator becomes:

1

quz = dth m

1
dQ2; SQQ1Q2 = 5 (quz + qum) (2'13)

The operator (), 4, is formed from the product of two dipole operators. It can be decomposed

into irreducible tensor components of rank k£ = 0, 1, 2 using angular momentum coupling:

QY = (kqll1q1¢2)Quugn,  k=0,1,2. (2.14)

q1,92

where ¢ = ¢1 + ¢2, and (kq|llg1q2) are Clebsch-Gordan coefficients. The inverse relation
allows one to re-express the symmetrized two-photon operator in terms of these irreducible
components:
2
0) (0
SQquIz = Z CL((;Q)QSJQ) + CL(() )Q(() g (2.15)
q=—2

where the aék) coefficients are given in Table 2.2.

This decomposition is crucial for determining selection rules, evaluating light shifts, and

computing transition matrix elements.
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T aéz) = \/75(5(1,,1 a((f) =4/ 3040 ag2) = 25,1
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G = +1 a(()o) = \/?g a(()o) =0 a(()o) =0

Table 2.2: Values of the coeflicient a((]k) for all combinations of the standard polarizations.

I1.2 Transition Matrix Elements

The central quantity in both two-photon transition probabilities and Raman Rabi frequencies is
the matrix element of the symmetrized two-photon operator *Q,,,, between coupled hyperfine
states. Using the Wigner-Eckart theorem, the matrix element between the initial state |p) =
lv, L, S, I, F, J,M;) = |gJ, M;) and final state |¢) = [/, L', S, I', F, J', M) = |eJ', M) can

be expressed as

(gJ||Q™||eJ")
V2Ji+1

(0" Qs 1) =D alP (' M) |kq.T M) (2.16)
k

where the reduced matrix element can be separated into a purely angular part and a rovibra-

tional matrix element [21]:

(9, QW le, J") = 61,0 (1) HHHHV2T +1V2) + 1

L k L . (2.17)
x{,}?J}wm@mmm

The symmetrized two-photon operator ° (04,4, can drive both rovibrational transitions, where
the molecule moves from v to v/ # v, and Raman (intra-rovibrational) transitions, where v/ = v
but internal hyperfine states change.

Rovibrational transitions govern the population transfer between different vibrational levels
and determine the absolute excitation strengths. These processes occur in an incoherent regime,
where individual excitation events are not phase-related and coherence between quantum states
is not maintained. In contrast, Raman transitions describe coherent coupling between hyperfine
states within the same vibrational level, enabling controlled state evolution characterized by
Rabi oscillations. While the incoherent regime is relevant for estimating transition rates and
population redistribution across vibrational levels, the coherent regime is essential for manipu-

lating superpositions and driving precise dynamics within a single rovibrational manifold.
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I1.2.1 Two-Photon Transition Probability

E(vs, L)

————————————————————— Virtual

E(vy, L1)

Figure 2.4: Two-photon rovibrational transition at resonance.

For a laser of intensity /, we define the two-photon transition probability per unit time P

between an initial hyperfine state |¢) and a final state |¢)) (with different rovibrational quantum

dra\? 4
P — 0 s ]2
( he ) L'y

where ag is the Bohr radius and I'y is the instrumental width of the transition. The instrumental

numbers v # V') as [6]:

2
)

(01° Quus 1))

(2.18)

width I'y represents the effective linewidth of the observed transition. It sets the frequency
window within which the transition can be efficiently driven.

The transition probability P is directly proportional to the square of the two-photon ma-
trix element ((b\Squ |¢)), which encodes the coupling strength between the two states via
virtual intermediate levels. This formulation allows us to identify favorable quantum numbers
and polarization configurations for driving efficient population transfer between rovibrational
states. Moreover, P reflects the interplay between rotational-vibrational dynamics and angular

momentum selection rules as described by second-order perturbation theory.
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I1.2.2 Two-Photon Rabi Frequency

------ Virtual

EWy Ly M) ——  —g E0nLL)M)

——————— Virtual

Figure 2.5: Raman transition occurring within the same rovibrational state and involving
different hyperfine sublevels.

When the two-photon detuning is set near zero within the same rovibrational level (v = /),
the system undergoes coherent Rabi oscillations between two hyperfine states |g) and |e). We
note that the generalized Rabi frequency can be written as

Amadl

Qg@ T’ <g‘S quz ’€> |7 (2'19)

correcting the prefactor compared to the expression in [5].

The Rabi frequency characterizes the strength of coherent coupling between quantum states
under continuous laser driving. Its computation is restricted to transitions within the same
vibrational level because in this regime, energy conservation implies negligible detuning. This

allows one to treat the dynamics in terms of population oscillations governed by 2.
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I1.2.3 Polarizability and Light Shifts

—————————————— Virtual

E(b‘l, l’.l,j, M]

______________ Virtual

Figure 2.6: ac Stark shifts experienced by a hyperfine level under two-photon illumination.

The same matrix formalism used to compute transition amplitudes allows us to determine
the dynamic polarizability of a hyperfine state |n) under two-photon illumination at angular
frequency w.

In a spherical tensor basis, the dynamic polarizability becomes

&n(w> = —471‘&3 Z €q1€q> <n|S Qq1q2(En + hw) +S quz(En - hw) |n> : (2'20)

41,92

Due to selection rules, only terms with ¢; + ¢o = 0 contribute to the expectation value
(n|° Qquq In), Which ensures angular momentum conservation in the two-photon interaction.

Consequently, the relevant polarization combinations are:

e (¢1,92) = (0,0) corresponding to m—7 light,

e (q1,q2) = (+1,—1) and (—1,41), corresponding to ct—o~ and 0~ —o" combinations.

This implies that circular polarization pairs of opposite handedness, such as (¢, 07) and

(07, 07), contribute to the polarizability, as long as the electric field contains both components.

Conversely, mixed combinations like (7, 0%) or (o0&, 1), where ¢; +q2 # 0, do not contribute due

to orthogonality. Thus, for an electric field with polarization components € = €yéy + €41 +

€_é_q, the light shift of state |n) becomes

1
AB, = —7 <|60|2 ¥ Qe [0) + 26" (0f° Qoo In) + €16 (0] Qoo |n>) . (2.21)

Finally, the differential light shift of a two-photon transition between states |g) and |e),

FE.—F, . .
evaluated at wy = =5, is given by

1 Aad®
AR = 2% Aag = af(uy) — 0f(wge). (2.22)
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Chapter 3

Methods and Results

I Transition Energies

For I = 0, the nuclear spin terms vanish, and the Zeeman Hamiltonian (2.6) simplifies to
Hy; =~ g.upSe - B + ugL - B. Together with the hyperfine interaction Hys = c.L - S.,
the total Hamiltonian (2.7) governs the energy shifts as a function of the magnetic field
AE(B) = E.(B) — E4(B). Following the approach of [19]|, I computed the eigenvalues and
eigenstates for the |[v = 0, L = 2) and |v = 1, L = 2) levels using Mathematica. By applying the
appropriate selection rules, I extracted the corresponding two-photon transition energies, given
by AE(B)/2.

In the low-field regime (Figure 3.2), the hyperfine interaction dominates. The eigenstates
are well described by the quantum numbers J and M, and the Zeeman interaction introduces

small perturbative corrections:
E(B) ~ Ey+yBM,,

where 7 is an effective coupling constant that involves the action of L and S.. Selection rules
impose M, = M+ q, so the transition energy varies approximately as AE(B) o (M}, —M;)B.
Thus, for ¢ = q1+¢2 # 0, the transition energy shows a linear dependence on B. In contrast, for
g = 0 transitions, where M/, = M, the linear terms cancel in the energy difference, and the shift
is dominated by higher-order contributions (typically quadratic in B) AE(B) ~ AE(0) + aB?.

In the high-field regime (Figure 3.1), the Zeeman interaction becomes the dominant term.
The magnetic field effectively decouples L and S., and the energies are primarily determined

by their independent contributions:

E(B) = Ey+ geit(Se) B + up(L) B + (small corrections from hyperfine interaction).

(Se) and (L) are the effective contributions from spin and orbital angular momentum in
the states. The hyperfine interaction still contributes as a perturbation, introducing residual
coupling between levels with similar energy. This residual coupling induces level repulsion and

leads to nonlinear bending in the energy curves as a function of the magnetic field.
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Figure 3.1: Calculated two-photon transition energies as a function of magnetic field (0-15 G)
for |.J, M) — |J, M) transitions, shown for polarization components ¢ = 0 (left) and ¢ = 1
(right). For ¢ = 1, the transitions exhibit a dominant linear Zeeman splitting, while for ¢ = 0,
nonlinear behavior persists, especially in states with strong hyperfine mixing. The region
highlighted by a square corresponds to the low-field regime explored in detail in Figure 3.2.
Note: The y-axis units differ among the panels and must be read carefully.
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Figure 3.2: Zoomed-in view of the low-field regime (0-0.1 G) corresponding to the boxed
region in Figure 3.1. In this regime, the hyperfine interaction dominates. For ¢ = 1, the
Zeeman shifts are small but linear, while for ¢ = 0, the transition energies exhibit
predominantly nonlinear (quadratic) dependence on B, characteristic of mixed states. Note:
The y-axis units differ among the panels and must be read carefully.
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As a result, both ¢ = 0 and ¢ # 0 transitions exhibit nonlinearities at high magnetic
fields. For ¢ # 0 transitions, the transition energies retain a strong linear dependence on
B, with nonlinearity appearing only as a small correction at larger fields. In contrast, for
g = 0 transitions (where the leading linear contributions to the energy difference cancel due
to AM; = 0) the nonlinear behavior stemming from hyperfine-induced level mixing becomes
more pronounced.

This distinction is clearly reflected in our numerical results: for ¢ = 0 transitions, the energy
shifts remain extremely small even at nonzero fields, with values < 6 kHz at B = 0.1 G. In
contrast, ¢ = 1 transitions exhibit shifts on the order of 30 kHz at the same field strength,
nearly 5000 times larger (see Figure 3.2). This stark difference highlights the dominant role of
linear Zeeman shifts in AM; # 0 transitions and underscores the sensitivity of ¢ = 0 transitions

to second-order (and higher) perturbative effects arising from residual hyperfine couplings.

II Spinless Matrix Elements

As discussed in Section I and Appendix A, the resonance energies of few-body quantum systems,
such as three-body Coulombic systems, are obtained by transforming the Schrodinger equation
into a generalized matrix eigenvalue problem, which is then solved numerically. The code used
in this work relies on basis functions optimized for rapid convergence, and experience with
this code suggests that basis sizes in the range of N = 550-900 are sufficient for achieving the
required accuracy. For the present calculations, I used these standard values, which provide a
good balance between computational cost and precision. Tests with slightly larger N confirmed
that the results did not change significantly, indicating that the chosen basis size is adequate
for transition probability calculations.

The reduced matrix elements (vL||Q®||v/L') are computed numerically by summing over
contributions from intermediate states with angular momentum L” = L — 1, L, L + 1. These

terms are evaluated using the dipole operator

d=> " Z,Ra,

where the sum runs over all particles a (e.g., the nuclei and electron), with Z, the charge

number and R, the position of particle a. The three contributions are:

(vL|d|v"L —1) ("L —1|d|v'L
“-=" Z 2L| +| (2L z<1)(w - E|v~|L1)>’ (3.1)
0, — —Z (vL|d[v"L + 1) (v”L+1\d\v’L’>’ (3.2)
L+ DD + = Bwrer)
_ Z (vL|d|v"L) (v"L|d|v'L") (3.3)

2L —|— 1 2L/ + 1)(w — Ev”L)7

where E,pn is the energy of the intermediate state |[v”L”), and w is the photon angular fre-
quency. For two-photon transitions, the photon energy is w = (E,, — Eyr/)/2. In our cal-

. . . ®) |y 1!
culations, we consistently use the reduced matrix elements %\/%“ rather than the bare
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(vL| Q™ |v'L"). The scalar (k = 0) and quadrupole (k = 2) components of the operator are
given by [5]:

WLIQU L) V3

NI =—5 (a— +ap+ay), (3.4)
(L] QP [v'L) 1 —
AT \/6\/:2L +3)(2L — 1)L(L + 1) )
y — - Qo 4 A+

L(2L—1) L(L+1) (2L+3)(L+1)]

3.24
- — (v=0.L=2||Q9|lv=0,L=2)
3 3.23
a |\ | |- af’, =3.1978
= 3.22
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T 321
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Figure 3.3: Reduced Matrix Elements (vL||Q™||v'L’) = (vL||Q™||v'L") /(v/2L + 1) for the
Raman Rabi frequency calculations for the states v =0, L = 2) (top) and |v =0, L = 2)
(bottom) across different wavelengths. The red-dotted line represents the static polarizability
(A — o0o) found in [5].
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Since the two-photon transition between rovibrational states is a resonant process, we adopt
a resonant wavelength of 9.15 um to compute the corresponding matrix elements. Our results
for the reduced two-photon matrix elements are (02[|Q®]12) = —0.547278, (02]|Q?||12) =
0.422419. In comparison, Jean-Philippe Karr reports in Ref. [5] the values(02[|Q©®]|12) =
—0.4239, (02[|Q@||12) = 0.3119.

Although the polarisabilities computed for each rovibrational level match perfectly with
those in Ref. [5] as seen in Figure 3.3, the values of the two-photon matrix elements show
a discrepancy. Since both results were obtained using the same computational framework,
this difference likely arises from differences in numerical precision, integration parameters, or
implementation details in the evaluation of the two-photon operator. For instance, differences
in the choice of energy reference point, level of convergence, or intermediate state truncation

could impact the matrix elements even if the underlying physics and code are equivalent.
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III Two-Photon Probabilites per Unit Time

Using a Mathematica code that I developed to compute the two-photon operator matrix ele-
ments, based on the formalism outlined in Section 1.3 and Eqs.(2.16) and (2.17), I analyzed
two-photon rovibrational transitions in Hf . My calculations focus on initial states with v = 0,
examining the dependence on magnetic quantum numbers J and M, as well as on various
photon polarization combinations (q;, ). The transition wavelength is set to 9.15, um, and T
varied the external magnetic field from 0 to 1 Gauss. For clarity, I present the results using the
notation |J, My) — |J', M%), which is shorthand for |v = 0,J, M) — |v = 1,J', M}).

It’s possible to normalize the comparison across all transitions under the assumption of equal
light intensity and being in resonant regime according to Equation (2.18), thus we can directly
interpret the squared matrix elements [(°Q,,4,)|* as relative transition probabilities. These
values reflect the efficiency of driving rovibrational population transfer, modulated by the over-
lap of angular momentum states, dipole selection rules, and the symmetry of the polarization

combination.

ITII.1 General trends

The following figures show the calculated spectra for different polarization configurations. Each
set of four panels corresponds to a specific polarization pair, organized as follows: left column,
B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with |3/2, M) — [3/2, M}),
bottom row, transitions with |5/2, M;) — |5/2, M’). Please note that the labels within each
panel are local and are not meant to be compared directly between panels.

The following behaviors reflect the two-photon selection rule AM = ¢ + g2, where g; is the

angular momentum of photon i (0 for 7, £1 for o).

e (m, 7) polarizations consistently yield the highest transition probabilities. This is ex-
pected, as m polarizations favor AM = 0 transitions, where selection rules and Clebsch-
Gordan coefficients strongly support no change in magnetic quantum number. Extremal
magnetic sublevels (|M| = J) exhibit the highest [(°Qy,4,)|?, reaching up to ~ 0.3 a.u.
for J = 5/2 and 2 0.15 a.u. for J = 3/2. Transitions involving central |M| decrease

below 0.1 a.u. but remain significant compared to polarizations where ¢; + ¢ # 0.

o (0%, 0F) also support AM = 0 transitions but via different intermediate-state couplings,
leading to smaller probabilities than (7, ) through an ’opposite’ behaviour since transi-

tions involving central |M| dominates this time.

e (7, 0%) or (0%, m) combinations lead to weak [(°Q,,4,)|?, as they mix AM = 0 and
AM = 41 contributions, which couple less efficiently resulting in weaker angular momen-
2

tum couplings. We have [(°Q,,,,)|* around 0.02 a.u. - 0.038 a.u. for outer-inner sublevel

transitions while opposite M transitions are strongly suppressed.

e (0%, 0%) produce small but noticeable |(°Qy,4,)|* for AM = +£2 transitions, in agreement
with angular momentum selection rules. We reach values around 0.04 a.u. for J = 3/2
and 0.068 a.u. for J = 5/2.
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Figure 3.5: Two Photon Rovibrational Transitions for (¢, o) polarization configuration.
Each subpanel shows the corresponding magnetic field strength and transition type. Local
labels are not comparable across panels.

I11.2 Behavior for J = 3/2

For (m, 7), the most probable transitions are those that conserve M, specifically |3/2, £3/2) —
13/2,43/2), with [(°Qy,4,)]? around 0.16 a.u. for magnetic fields below 1 Gauss. The energy
ordering of these transitions reverses at B ~ 0.8 Gauss due to the nonlinear Zeeman splitting of
the sublevels under these polarisations (Figure 3.4 (a) and (b)). The complementary (o, o)
configurations yield lower [(°Q,,4,)|%, approximately 0.07 a.u. for |3/2,41/2) — [3/2,+1/2)
and about 0.03 a.u. for [3/2, £3/2) — [3/2, £3/2).

For mixed polarizations (7, 0&), transitions that change | M| by one unit, such as |3/2, —3/2) —
13/2,—1/2) or 3/2,1/2) — |3/2,3/2), are the dominant ones but occur with [9Q,,,,|* around
0.02 a.u. Opposite-M transitions like [3/2, —1/2) — |3/2,1/2) are strongly suppressed, with
|(°Qy1g0)]* below 1072 a.u. (Figure 3.4 (f) and (g)). Same-helicity circular polarizations (o,
oF) produce small but measurable AM = £2 transitions, with [(°Qq,4,)* = 0.04 a.u. (Figure
3.5 (a) and (b)).

I11.3 Behavior for J = 5/2

For (m, 7), the strongest transitions are |5/2, £5/2) — [5/2, £5/2), with [(°Q, 4 )|? near 0.3 a.u.
Transitions involving lower |M| values are weaker, with [(°Q,,4,)* ~ 0.1 a.u. for M = £3/2
and [(*Qgp) > ~ 0.05 for M = £1/2 (Figure 3.4 (c¢) and (d)). In contrast, the (%, oF)
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configurations favor transitions with lower |M|: [5/2,£1/2) — [5/2,41/2) reach [(*Qqq)]*
around 0.1 a.u., while |5/2,43/2) — |5/2,43/2) give about 0.08 a.u. The |(°Qyq4)|* for
M = £5/2 drop to about 0.04 a.u.

For (7, 0%), the AM = 41 transitions remain modest for external transitions, typically with
|(°Qgy0)* ~ 0.037 a.u., then they decrease to around 0.015 a.u. for more inner transitions and
negligible for |M| = 1/2 (Figure 3.4 (h) and (i)). Same-helicity circular polarizations (o, o)
result in small but detectable AM = £2 transitions, with [(°Q,,4,)|* around 0.068 a.u. for
paths involving both M = £1/2 and £+3/2 (Figure 3.5 (c) and (d)).

II1.4 Magnetic Field dependence

The magnetic field modifies both the energy levels and the structure of the eigenstates through
Zeeman splitting (as discussed in Section 1.3), which in turn affects two-photon coupling
strengths. This influence is most evident in the reversal of transition energy orderings for
¢ = 0 and in the gradual redistribution of |(°Qy,4,)|> among different M levels as the field
increases (Figure 3.4).
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IV  Light Shifts in Two-Photon Hyperfine Transitions

With the same Mathematica code that I developed for computing the two-photon operator
matrix elements—based on the formalism outlined in Section 1.3 and Egs. (2.16), (2.17), and
(2.22)—1I analyzed the AC Stark shifts (light-induced energy shifts) associated with two-photon
transitions between hyperfine sublevels of the Hy molecular ion, for magnetic fields ranging from
0 to 1 Gauss. The transition photon wavelength is set to 9.15 um. The results are expressed
using the notation |.J, M) — |J', M%) (a shorthand for |v = 0,.J, M) — |v = 1,J', M’})), with
a particular emphasis on the influence of different laser polarization combinations and angular
momentum projections on the observed shifts.

For polarization combinations (q1, ¢2) = (7, 7), (6%, 7), (7,0

+), the polarizability is assumed
to be dominated by the m7 channel. For simplicity, we attribute the entire laser intensity to
this channel I = 0.1 W/mm?. This assumption highlights the relative behavior of the various
polarization configurations rather than their absolute values. In a real experimental setup, each
laser beam has its own intensity, and the total two-photon coupling depends on the product of
the corresponding field amplitudes. Adjusting to realistic intensity distributions would therefore
amount to a straightforward rescaling of the computed results, without altering the trends
reported here.

For mixed circular polarizations (0=, 07), both permutations contribute symmetrically, and
the laser intensity is divided equally between the (6%,07) and (07,0") components (I/2 for
each one). Transitions with ¢; + ¢ = 0 (i.e., AM; = 0) induce scalar light shifts and are

therefore excluded from the differential light shift analysis.

IV.1 General Trends

The following figures show the calculated spectra for different polarization configurations. Each
set of four panels corresponds to a specific polarization pair, organized as follows: left column,
B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with |3/2, M) — [3/2, M}),
bottom row, transitions with |5/2, M;) — |5/2, M’). Please note that the labels within each

panel are local and are not meant to be compared directly between panels.
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Figure 3.6: Two-photon light shifts for two polarization configurations. Each subpanel shows
the corresponding magnetic field strength and transition type. Local labels are not
comparable across panels.
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e (m, m): This configuration allows only AM; = 0 transitions. The observed light shifts are
strictly negative, reflecting a scalar-dominated polarizability. The magnitude increases
with |M;|, in agreement with the enhanced coupling of stretched states in tensor polar-

izability interactions.

e (0%, 0T): Diagonal transitions are again favored, but here the light shifts are positive.
Interestingly, the magnitude is largest for lower | M|, indicating that tensorial components

dominate and their angular dependence favors central Zeeman sublevels.

e (7, %) or (0%, m): These mixed polarization cases allow AM; = +1 transitions and
exhibit both positive and negative light shifts. The shift direction depends on the sign
of M; and the circular polarization’s handedness, revealing asymmetries associated with

angular momentum transfer and the interference between vector and tensor components.

IV.2 Behavior for J = 3/2

Under purely longitudinal light (7, 7), the light shifts are negative and increase in magnitude
with |M;|. The transition involving |M;| = 3/2 is more strongly shifted than that involving
|M;| = 1/2, as expected from the enhanced coupling of stretched states to intermediate levels
through electric dipole interactions (Figure 3.6 (a) and (b)). This monotonic trend is consis-
tent with scalar and tensor polarizability effects. For the complementary symmetrized circular

* 07) are applied, the light shifts become positive. The trend reverses: the

polarizations (o
|M;| = 1/2 sublevel experiences the largest shift, while the |M;| = 3/2 sublevel is less af-
fected. This behavior suggests the presence of a dominant tensorial interaction whose angular
momentum structure favors lower |M| states under circular polarizations.

For mixed polarization combinations such as (m,0"), we observe that transitions of the
type |3/2,—-3/2) — |3/2,—1/2) exhibit positive light shifts, whereas their counterparts at the
opposite end of the Zeeman ladder, such as [3/2,1/2) — |3/2,3/2), produce negative shifts
(Figure 3.6 (f) and (g)). A similar pattern is found for (7,07) polarization, with the roles of
My <> —Mj interchanged, illustrating a mirror symmetry under magnetic quantum number
inversion. The transition involving |M,| = 1/2, namely [3/2,—1/2) — |3/2,1/2), also results

in a negative shift for both cases and is the weakest among them

IV.3 Behavior for J = 5/2

Asin the J = 3/2 case, (7, 7) transitions show exclusively negative shifts that grows nonlinearly
and symmetrically in magnitude with increasing |M;|. The strongest shift occurs for the |M;| =
5/2 sublevel, and the smallest for |M;| = 1/2 (Figure 3.6 (¢) and (d)). The polarizability in this
configuration contains strong scalar and tensor components that preferentially couple stretched
states more strongly. Under (0%, 07) polarization, the behavior is reversed: the largest positive
light shift appears for |M;| = 1/2, while the magnitude decreases for |M;| = 3/2 and becomes
smallest for |M;| = 5/2. This reversal highlights how the tensor structure of the light shift
depends strongly on the polarization geometry and the angular momentum structure of the

states involved.
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+) *, 7) yield shifts that are both positive and negative,

Mixed polarization cases (7w, 0~) or (o
depending on the specific transition. For instance, for o™ transitions like [5/2,3/2) — |5/2,5/2)
and [5/2,1/2) — |5/2,3/2) yield negative shifts (decreasing in magnitude in this order), while
15/2,-3/2) — |5/2,—1/2) and |5/2,—5/2) — |5/2,—3/2) transitions yield positive shifts (in-
creasing in magnitude in this order) (Figure 3.6 (h) and (i)). A similar pattern is found for
(m,07) polarization, with the roles of M; <» —M interchanged, illustrating the same mirror
symmetry under magnetic quantum number inversion. These transitions are AM; = £1 and
their sensitivity to both M; and the polarization direction confirm that vector components
contribute to the light shift and can interfere either constructively or destructively with scalar

and tensor parts.

IV.4 Magnetic Field Dependence

For (m,7) transitions, the light shifts remain approximately constant as the magnetic field is
varied from B = 0 to 1 Gauss. This robustness is expected for AM; = 0 transitions where the
intermediate state structure remains largely unaffected by linear Zeeman shifts.

By contrast, transitions under (m,0%) or (0%, 7) exhibit a mild but observable B-field de-
pendence. For instance, the shift for |5/2, —1/2) — |5/2, —3/2) slightly increases with B, while
the shift for |5/2,+3/2) — |5/2,41/2) decreases. This behavior arises from the magnetic-field-
induced mixing of the hyperfine sublevels, which modifies the angular momentum composition
of the states involved. In the Wigner—Eckart formalism, this manifests as a B-dependent redis-
tribution of the transition strengths via the Clebsch—Gordan coefficients and tensor components
of the polarizability operator, rather than from any significant change in the energy denomina-
tors of the virtual states

Such behavior emphasizes the importance of carefully selecting polarization configurations
and field strengths in precision spectroscopy experiments, where differential light shifts can

significantly affect measurement accuracy.
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V Raman Rabi Frequencies

Building upon the same Mathematica implementation developed for the two-photon operator
matrix elements (Section 1.3), I extended the calculations to analyze two-photon Raman transi-
tions within the rovibrational ground state (v = 0) of Hf according to (2.19). Here, the focus is
on the behavior of the Rabi frequencies 2 as functions of the magnetic sublevel quantum num-
bers (J, M), polarization combinations (g, ¢2), and external magnetic field strengths ranging
from 0 to 1 Gauss.

In this section, I consider a representative laser frequency, where the Raman matrix elements
(n||*Q™ (E)||n) have been computed as a function of the photon energy (see Figure 3.3). Since
the Raman transition probability and the associated Rabi frequency depend on the detuning
from intermediate virtual states, the choice of the laser wavelength is not unique and can be
optimized.

The laser intensity is fixed at I = 0.1 W/mm?, and the results for Q presented below
are computed for A = 1 um. The trends discussed are representative of this wavelength, al-
though quantitative values would scale with A according to the corresponding transition ma-
trix elements. Transitions are labeled using the notation |J, M;) — |J', M’), shorthand for
lv=0,J,M;) = |v=0,J 6 M,).

V.1 General Trends

The following figures show the calculated spectra for different polarization configurations. Each
set of four panels corresponds to a specific polarization pair, organized as follows: left column,
B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with |3/2, M) — [3/2, M}),
bottom row, transitions with |5/2, M;) — |5/2, M’). Please note that the labels within each
panel are local and are not meant to be compared directly between panels.

The overall structure follows similar trends observed in two-photon rovibrational transitions.
Each polarization combination excites transitions with characteristic angular momentum selec-

tion rules, reflected in the distribution and magnitude of the Rabi frequencies.

o (m, o) or (0%, 7): These mixed polarizations allow AM = 41 transitions, generally
yielding weaker Rabi frequencies. Typical values lie in the range €2 ~ 0.46 Hz — 0.64 Hz
for outer-to-inner sublevel transitions (e.g., |J, —3/2) — |J, —1/2)), while opposite-M
transitions (e.g., |J, —1/2) — |J,1/2)) are strongly suppressed, with Q < 0.01 Hz.

e (0%, 0%): These enable AM = 42 transitions. Despite the higher angular momentum
transfer, Rabi frequencies remain measurable, reaching values around 0.66 Hz for .J = 3/2
and up to 0.85 Hz for J = 5/2. The Rabi frequencies of these transitions show little or

no dependence on the magnetic field.
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Figure 3.7: Raman Rabi Frequencies for two polarization configurations. Each subpanel
shows the corresponding magnetic field strength and transition type. Local labels are not

comparable across panels.
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V.2 Behavior for J = 3/2

In the mixed (m,0%) configurations, transitions that change |M| by 1 (e.g., |3/2,—-3/2) —
13/2,—1/2) and |3/2,1/2) — [3/2,3/2)) vield Q ~ 0.465 Hz. Transitions between opposite
sublevels (e.g., [3/2,—1/2) — |3/2,1/2)) are strongly suppressed, with Q < 0.01 Hz, although
they exhibit a small increase with B (Figure (3.7) (a) and (b)).

For (o%,0%), AM = 42 transitions such as |3/2,—3/2) — [3/2,1/2) or |3/2,3/2) —
|3/2,—1/2) produce Rabi frequencies around €2 ~ 0.66 Hz, with no noticeable field dependence
(Figure (3.7) (f) and (g)).

V.3 Behavior for J =5/2

In the (m,0%) or (0%, 7) cases, transitions such as |5/2,|M;| = 3/2) <> |5/2,|M;| = 5/2) and
15/2,|M;| = 1/2) <> |5/2,|M;| = 3/2) show Q values 0.4 Hz and 0.66 Hz respectively. Opposite-
M transitions remain suppressed with © < 0.01 Hz (Figure (3.7) (c) and (d)).

For (0%,0%), AM = 42 transitions are robust across all field strengths, with Rabi fre-
quencies between 0.63 Hz and 0.85 Hz, depending on the specific pair of initial and final states
(Figure (3.7) (h) and (i)).

V.4 Magnetic Field Dependence

The external magnetic field modifies the Rabi frequencies primarily through Zeeman-induced
mixing of the hyperfine sublevels, which alters the angular momentum structure and polarization-
dependent couplings. For (7, 7) transitions involving extremal magnetic sublevels, this mixing
slightly enhances the two-photon matrix elements, leading to a modest increase in ). In con-
trast, transitions involving central sublevels, especially under (0=, o7) or (0%, 1), remain weakly
allowed due to symmetry constraints, but still show a small growth in Q (up to ~ 0.01 Hz at
B = 1 Gauss) because of the redistribution of transition strength among M levels. This
behavior is therefore attributed to field-induced mixing and interference effects in the tensor

components of the two-photon operator, rather than improved resonance conditions.
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VI Light Shifts in Raman Transitions

I applied again the light-shift formalism to analyze the AC Stark shifts (light-induced energy
shifts) associated with two-photon Raman transitions between hyperfine sublevels within the
vibrational ground state (v = 0) of Hj, for magnetic fields ranging from 0 to 1 Gauss. The
calculations were performed for a representative photon wavelength of A\ = 9.15 ym, with tran-
sitions denoted as |.J, M) — |J', M%), shorthand for |0,.J, M) — |0, J", M?).

For polarization combinations (qi,q.) = (7, 7), (6%, 7), (7,0%), the polarizability is dom-
inated by the mm channel. To simplify the analysis, I assigned the entire laser intensity
I = 0.1 W/mm? to this channel. This choice is intended to highlight relative behaviors across
polarization configurations; in practice, each laser beam has its own intensity, and the two-
photon coupling scales with the product of their field amplitudes. Adjusting to realistic intensity
distributions would therefore correspond to a simple rescaling of the computed results.

For mixed circular polarizations (0=, 0T), both permutations contribute equally, and the
laser intensity is divided as I/2 between the (¢7,07) and (¢7,0") components. Transitions
with ¢1 + g2 = 0 (i.e., AM; = 0) result in purely scalar light shifts and are excluded from the

present discussion, as they do not affect the differential transition frequencies.

VI.1 General Trends

The following figures show the calculated spectra for different polarization configurations. Each
set of four panels corresponds to a specific polarization pair, organized as follows: left column,
B = 0 Gauss; right column, B = 1 Gauss; top row, transitions with [3/2, M) — |3/2, M}),
bottom row, transitions with |5/2, M;) — |5/2, M’). Please note that the labels within each
panel are local and are not meant to be compared directly between panels.

These observations align with dipole selection rules and the expected behavior of tensor

light shifts under linear and circular polarizations.

e The polarization pairs (7, 0=) and (0%, 7) yield the dominant off-diagonal light shifts
relevant for Raman transitions. These produce shifts symmetric about A|M;| = 0, where
transitions decreasing | M| (e.g., 3/2 — —1/2) exhibit positive shifts, while those increas-
ing | M| (e.g., 1/2 — 3/2) show negative shifts.

e Other polarization configurations are not included, as they correspond either to scalar
shifts (no differential energy change) or forbidden transitions under the selection rules

relevant here.
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Figure 3.8: Raman light shifts for two polarization configurations. Each subpanel shows the
corresponding magnetic field strength and transition type. Local labels are not comparable
across panels.
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VI.2 Behavior for J = 3/2

For the (oF, ) polarization, the transition |3/2,—3/2) — |3/2, —1/2) experiences a light shift
of approximately 0.19 Hz, while [3/2,—1/2) — |3/2,1/2) shows a negligible shift near zero,
and |3/2,1/2) — |3/2,3/2) experiences a shift of about —0.19 Hz (Figure 3.8 (a) and (b)).
The (o0, ) polarization yields a symmetric behavior: [3/2,3/2) — [3/2,1/2) has a light shift
around 0.19 Hz, |3/2,1/2) — |3/2,—1/2) is negligible, and [3/2, —1/2) — |3/2, —3/2) shows a
shift near —0.18 Hz. This near mirror symmetry confirms the expected polarizability patterns,
with null shifts at M; = £1/2 corresponding to vanishing differential light shifts between these
sublevels (Figure 3.8 (f) and (g)).

VI.3 Behavior for J = 5/2

For (o, 7) polarization, the light shifts follow a clear trend where the extremal transitions
exhibit the largest magnitudes: |5/2,3/2) — |5/2,5/2) shows approximately —0.2 Hz, while
15/2,1/2) —15/2,3/2) is around —0.1 Hz and slightly decreases with increasing magnetic field.
The transition |5/2, —1/2) — [5/2,1/2) remains negligible, whereas |5/2, —3/2) — |5/2,—1/2)
exhibits a positive shift of about 0.1 Hz that grows slightly with the magnetic field, and
15/2,—5/2) — |5/2,—3/2) shows the largest positive shift around 0.2 Hz (Figure 3.8 (c) and
().

For (0, m) polarization, the pattern is reversed with respect to the sign of M;: |5/2, -3/2) —
|5/2,—5/2) has a shift near —0.2Hz, |5/2,—1/2) — |5/2,—3/2) is around —0.1 Hz and in-
creases with field strength, [5/2,1/2) — |5/2,—1/2) is negligible and decreases slightly with
magnetic field, [5/2,3/2) — |5/2,1/2) is about 0.1 Hz and decreases with field, and |5/2,5/2) —
|5/2,3/2) is about 0.2Hz. This antisymmetry with respect to M; — —M; and the near-zero
shifts around M; = 41/2 reflect the expected tensor light-shift structure and the minima in
the differential polarizability gradient (Figure 3.8 (h) and (i)).

V1.4 Magnetic Field Dependence

Overall, the computed light shifts for the Raman transitions remain extremely small, typically
in the sub-Hz range over the magnetic field interval of 0 to 1 Gauss. This behavior is primarily
due to the strong cancellation between the ac Stark shifts of the initial and final states, which
share the same electronic, vibrational, and rotational structure. For the two-photon transitions
between different vibrational levels, a similar cancellation occurs because the electronic and
rotational structures are identical in both states.

The residual variations observed (less than 0.05 Hz across the range) are therefore minor and
mainly reflect the small difference in polarizability between the coupled states, rather than any
substantial modification of the underlying tensor components with the magnetic field. Although
these variations are negligible for most practical purposes, they become relevant when aiming

for sub-Hz precision.
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Chapter 4
Conclusion

We have presented a comprehensive analysis of two-photon rovibrational spectroscopy in Hj
combining accurate calculations of dissociation energies, transition probabilities, Raman Rabi
frequencies, and Zeeman shifts under various laser polarizations and magnetic sublevels. The

computed dissociation energies,
Eais(v =0, L = 2) = —2.6290924577 n, Eyis(v =1, L = 2) =~ —2.3585684489 eV,

confirm that the states under study belong to the low-lying rovibrational levels of the 1so,
potential. The energy difference AFEg;s ~ 0.270524 eV corresponds to a two-photon transition
frequency of approximately 15, = % ~ 32.7062 THz, which sets the requirements for laser
frequency stabilization in high-precision spectroscopy.

A key finding is the very small magnetic-field sensitivity of transitions satisfying ¢; +¢o = 0.
For magnetic fields B < 0.1 G, the Zeeman shift remains below Avy; < 6 Hz, corresponding to a
relative shift below 107! with respect to the two-photon excitation frequency (2 x 32.7 THz =
65.4 THz). This remarkable insensitivity to magnetic perturbations is a crucial asset for preci-
sion measurements.

The calculated two-photon transition matrix elements at a test wavelength of 1.5 yum,
(0,2/Q1,2) = —0.547278, (0,2|Q?P|1,2) = 0.422419,

are slightly larger than previously reported values [5], but they correctly reproduce the known
static polarizabilities, indicating that the discrepancy arises from numerical convergence rather
than physical modeling.

AC Stark shifts are found to be negligible for realistic laser intensities. For example, at
I = 0.1 W/mm?, the induced frequency shifts are on the order of Hz or mHz, far below the
kHz—MHz scale of the intrinsic linewidths. Their polarization dependence (negative for (m, ),
positive for (0=, 0F), and asymmetric for mixed configurations) reflects the interplay of scalar

and tensor polarizabilities but has no significant impact on the achievable accuracy.
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In conclusion, (7, 7)-polarized lasers driving two-photon rovibrational transitions of Hj
(with photon wavelength A ~ 9.17 um) offer particularly favorable conditions for high-precision
spectroscopy. These transitions combine strong excitation probabilities, extremely low Zeeman
sensitivity (sub-10 Hz at 0.1 G), and minimal light shifts, making them ideally suited for fre-
quency metrology and fundamental tests with molecular ions. For Raman transitions between
hyperfine or Zeeman sublevels within the same rovibrational level (v = 0, L = 2), similar ad-
vantages are found, with the added flexibility of choosing the photon wavelength (e.g., near

1.5 um) to optimize laser performance and minimize systematic effects.
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Appendix A

Wave Functions Variational Calculation

We employ a variational approach based on the method proposed by [22], which constructs
a trial wavefunction with variational parameters and minimizes the expectation value of the
Hamiltonian to approximate the bound or resonant state energies of the system.

The total wavefunction, introduced in Eq. (2.3), ¥, (R,r;), is expanded in a basis of
coupled spherical harmonics and radial functions. The angular dependence is described by
bipolar harmonics, while the radial part incorporates correlation functions that capture the
dynamical behavior of the three-body system.

The exponents «,, 3,, and 7, in the radial function expansion are complex numbers chosen
in a quasi-random manner to ensure both completeness and rapid convergence. The use of
complex exponentials is particularly advantageous for describing oscillatory structures and the
nodal patterns characteristic of resonant or molecular-like states.

A general trial wavefunction is constructed as a linear combination of atomic- and molecular-

like components. It is expressed as:

Uun(R,r) = Z R [Y, @ Yi,]py Guupn(R,ru),
l1+lo=L

where the radial function takes the form:

Guiu(R,ru) = Z [Ci cos(n;R) + D;sin(n; R) | e~ #=bir—giv
i
with the parameters a;, b;, ¢;, and n; also chosen quasi-randomly. The inclusion of oscillatory
functions cos(n;R) and sin(n;R) enhances the flexibility of the basis in representing the nodal
structure of molecular orbitals and vibrational states.

The variational problem reduces to solving the generalized eigenvalue equation:
Ac = EBc,

where A and B are real symmetric matrices of size 2N x 2N (with N being the number of basis
functions), and c is the vector of expansion coefficients. For each chosen set of complex varia-
tional parameters, the program constructs and diagonalizes the matrix pair (A4, B), extracting

the eigenvalues and normalizing the corresponding eigenvectors.
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Appendix B

Linear Paul Trap

A Paul trap confines charged particles using a time-dependent quadrupole potential. By apply-
ing oscillating radio-frequency (RF) electric fields, it creates an effective, time-averaged poten-
tial that leads to stable confinement. The general electrostatic potential has the quadrupolar
form:

O(z,y,2) = ax® + By* + 727, (B.1)

and Laplace’s equation in free space imposes the condition:
a+B+v=0. (B.2)

This constraint, in line with Earnshaw’s theorem, implies that a static electrostatic po-
tential cannot trap a charged particle in all three spatial dimensions simultaneously—at least
one direction must be deconfining. The Paul trap overcomes this limitation by dynamically
switching the confinement axes using an RF field. When averaged over one oscillation period,
this produces a net confining effect.

In other words, it is impossible for all second derivatives (curvatures) of the potential to
be simultaneously positive. The alternating RFE fields continuously rotate the confinement

directions, such that the particle experiences overall stability over time.

I Linear Paul Trap

In practice, a common implementation of this principle is the linear Paul trap, which employs
a 2D quadrupole potential:

V(t)
2r2
where V(t) = U — V cos(Qt) includes both a static (DC) component U and an RF component

V cos(02t). This potential does not vary along the z-axis, which remains unconfined.

(I)(mv Y, t) = ($2 - y2)> (B3)

The force is obtained via F = —¢V®, leading to the equations of motion [4]:

mi = %[U — Vecos(Qt)]z, mij = —%[U — Vecos(Qt)]y, 2=0.
0 0
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Introducing the dimensionless parameters:

Qt 4qU 2qV
T = — aqQ = ———— = —
27 mriQ?’ 1 mriQ?’
we obtain the Mathieu equations:
d*x d*y

+ [a — 2q cos(27)]z = 0, + [—a + 2gcos(27)]y = 0.

dr? dr?
The solutions are stable only within specific regions of the (a, q) stability diagram.

5.0 0.50

2.5 10.25

S 0.0 (4000 &

=25 4-0.25

-5.0 0.50

Qu Qu

Figure B.1: Stability diagram of the Mathieu equation for a linear RF trap [4]. Left:
overlapping regions define stable solutions. Right: the first stable region.

I.1 Adiabatic Approximation and Micromotion

When a < 1 and ¢ < 1, the ion motion can be separated into r(t) = R(t) + £(t), where
R(t) describes the slow secular motion, and £(t) is the fast micromotion at frequency €2 [23].
The total electric field is E(t) = Eq 4+ Eq(t), where E is a static component, and Eq(¢) is the

RF field driving the micromotion. Averaging over one RF cycle leads to the ponderomotive

potential:
2
_ 4 2
Pen(r) = oz [Ba(r)[%, (B.4)
with an associated averaged force (Fgyp) = —%V!EQP. The resulting secular motion is

harmonic, with effective frequencies:

QQ 2
wfc’y =7 <a + %) . (B.5)

1.2 Endcap Potential and Axial Confinement

To confine ions along z, additional static potentials are applied to endcap electrodes:

U1 $2 + y2
(I)endcap(xaya Z) = ggﬁp (ZQ - 9 ) (BG)
resulting in axial harmonic motion:
2qU
P4wlz=0, wl= q21. (B.7)
Mmzeg
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Appendix C

Supplementary Results: Complete Data
Sets for Two-Photon and Raman

Calculations

For completeness, this appendix compiles the full set of numerical results generated from the
calculations of the Two Photon operator described in Chapters 2 and 3. Although these com-
plete results are not analyzed in detail in the main text, they follow the same selection rule
patterns and general trends discussed in Chapter 3. They are provided here as a reference and

for potential future analysis of specific transitions of experimental interest.
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Figure C.1: Comprehensive results for two-photon transition probabilities for all polarization
configurations (qi, ¢2) and magnetic fields B = 0 and 1 G. Local labels within each panel are
not directly comparable across different subfigures.
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Figure C.2: Comprehensive results for two-photon transition probabilities for all polarization
configurations (q1, ¢2) and magnetic fields B = 0 and 1 G. Local labels within each panel are
not directly comparable across different subfigures.
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Figure C.3: Comprehensive results for two-photon light shifts for all polarization
configurations (qi, ¢2) and magnetic fields B = 0 and 1 G. Local labels within each panel are
not directly comparable across different subfigures.
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Figure C.4: Comprehensive results for Raman Rabi Frequencies for all polarization
configurations (q1,¢2) and magnetic fields B = 0 and 1 G. Local labels within each panel are
not directly comparable across different subfigures.
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Figure C.5: Comprehensive results for Raman light shifts for all polarization configurations
(g1, q2) and magnetic fields B = 0 and 1 G. Local labels within each panel are not directly
comparable across different subfigures.
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